No Arabic abstract
Online action detection is a task with the aim of identifying ongoing actions from streaming videos without any side information or access to future frames. Recent methods proposed to aggregate fixed temporal ranges of invisible but anticipated future frames representations as supplementary features and achieved promising performance. They are based on the observation that human beings often detect ongoing actions by contemplating the future vision simultaneously. However, we observed that at different action progressions, the optimal supplementary features should be obtained from distinct temporal ranges instead of simply fixed future temporal ranges. To this end, we introduce an adaptive features sampling strategy to overcome the mentioned variable-ranges of optimal supplementary features. Specifically, in this paper, we propose a novel Learning Action Progression Network termed LAP-Net, which integrates an adaptive features sampling strategy. At each time step, this sampling strategy first estimates current action progression and then decide what temporal ranges should be used to aggregate the optimal supplementary features. We evaluated our LAP-Net on three benchmark datasets, TVSeries, THUMOS-14 and HDD. The extensive experiments demonstrate that with our adaptive feature sampling strategy, the proposed LAP-Net can significantly outperform current state-of-the-art methods with a large margin.
Action recognition is an open and challenging problem in computer vision. While current state-of-the-art models offer excellent recognition results, their computational expense limits their impact for many real-world applications. In this paper, we propose a novel approach, called AR-Net (Adaptive Resolution Network), that selects on-the-fly the optimal resolution for each frame conditioned on the input for efficient action recognition in long untrimmed videos. Specifically, given a video frame, a policy network is used to decide what input resolution should be used for processing by the action recognition model, with the goal of improving both accuracy and efficiency. We efficiently train the policy network jointly with the recognition model using standard back-propagation. Extensive experiments on several challenging action recognition benchmark datasets well demonstrate the efficacy of our proposed approach over state-of-the-art methods. The project page can be found at https://mengyuest.github.io/AR-Net
Most work on temporal action detection is formulated as an offline problem, in which the start and end times of actions are determined after the entire video is fully observed. However, important real-time applications including surveillance and driver assistance systems require identifying actions as soon as each video frame arrives, based only on current and historical observations. In this paper, we propose a novel framework, Temporal Recurrent Network (TRN), to model greater temporal context of a video frame by simultaneously performing online action detection and anticipation of the immediate future. At each moment in time, our approach makes use of both accumulated historical evidence and predicted future information to better recognize the action that is currently occurring, and integrates both of these into a unified end-to-end architecture. We evaluate our approach on two popular online action detection datasets, HDD and TVSeries, as well as another widely used dataset, THUMOS14. The results show that TRN significantly outperforms the state-of-the-art.
Most recent approaches for online action detection tend to apply Recurrent Neural Network (RNN) to capture long-range temporal structure. However, RNN suffers from non-parallelism and gradient vanishing, hence it is hard to be optimized. In this paper, we propose a new encoder-decoder framework based on Transformers, named OadTR, to tackle these problems. The encoder attached with a task token aims to capture the relationships and global interactions between historical observations. The decoder extracts auxiliary information by aggregating anticipated future clip representations. Therefore, OadTR can recognize current actions by encoding historical information and predicting future context simultaneously. We extensively evaluate the proposed OadTR on three challenging datasets: HDD, TVSeries, and THUMOS14. The experimental results show that OadTR achieves higher training and inference speeds than current RNN based approaches, and significantly outperforms the state-of-the-art methods in terms of both mAP and mcAP. Code is available at https://github.com/wangxiang1230/OadTR.
In this paper, we present Long Short-term TRansformer (LSTR), a new temporal modeling algorithm for online action detection, by employing a long- and short-term memories mechanism that is able to model prolonged sequence data. It consists of an LSTR encoder that is capable of dynamically exploiting coarse-scale historical information from an extensively long time window (e.g., 2048 long-range frames of up to 8 minutes), together with an LSTR decoder that focuses on a short time window (e.g., 32 short-range frames of 8 seconds) to model the fine-scale characterization of the ongoing event. Compared to prior work, LSTR provides an effective and efficient method to model long videos with less heuristic algorithm design. LSTR achieves significantly improved results on standard online action detection benchmarks, THUMOS14, TVSeries, and HACS Segment, over the existing state-of-the-art approaches. Extensive empirical analysis validates the setup of the long- and short-term memories and the design choices of LSTR.
Facial action unit (AU) detection and face alignment are two highly correlated tasks, since facial landmarks can provide precise AU locations to facilitate the extraction of meaningful local features for AU detection. However, most existing AU detection works handle the two tasks independently by treating face alignment as a preprocessing, and often use landmarks to predefine a fixed region or attention for each AU. In this paper, we propose a novel end-to-end deep learning framework for joint AU detection and face alignment, which has not been explored before. In particular, multi-scale shared feature is learned firstly, and high-level feature of face alignment is fed into AU detection. Moreover, to extract precise local features, we propose an adaptive attention learning module to refine the attention map of each AU adaptively. Finally, the assembled local features are integrated with face alignment feature and global feature for AU detection. Extensive experiments demonstrate that our framework (i) significantly outperforms the state-of-the-art AU detection methods on the challenging BP4D, DISFA, GFT and BP4D+ benchmarks, (ii) can adaptively capture the irregular region of each AU, (iii) achieves competitive performance for face alignment, and (iv) also works well under partial occlusions and non-frontal poses. The code for our method is available at https://github.com/ZhiwenShao/PyTorch-JAANet.