Do you want to publish a course? Click here

OadTR: Online Action Detection with Transformers

120   0   0.0 ( 0 )
 Added by Xiang Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Most recent approaches for online action detection tend to apply Recurrent Neural Network (RNN) to capture long-range temporal structure. However, RNN suffers from non-parallelism and gradient vanishing, hence it is hard to be optimized. In this paper, we propose a new encoder-decoder framework based on Transformers, named OadTR, to tackle these problems. The encoder attached with a task token aims to capture the relationships and global interactions between historical observations. The decoder extracts auxiliary information by aggregating anticipated future clip representations. Therefore, OadTR can recognize current actions by encoding historical information and predicting future context simultaneously. We extensively evaluate the proposed OadTR on three challenging datasets: HDD, TVSeries, and THUMOS14. The experimental results show that OadTR achieves higher training and inference speeds than current RNN based approaches, and significantly outperforms the state-of-the-art methods in terms of both mAP and mcAP. Code is available at https://github.com/wangxiang1230/OadTR.

rate research

Read More

We formulate the problem of online temporal action detection in live streaming videos, acknowledging one important property of live streaming videos that there is normally a broadcast delay between the latest captured frame and the actual frame viewed by the audience. The standard setting of the online action detection task requires immediate prediction after a new frame is captured. We illustrate that its lack of consideration of the delay is imposing unnecessary constraints on the models and thus not suitable for this problem. We propose to adopt the problem setting that allows models to make use of the small `buffer time incurred by the delay in live streaming videos. We design an action start and end detection framework for this online with buffer setting with two major components: flattened I3D and window-based suppression. Experiments on three standard temporal action detection benchmarks under the proposed setting demonstrate the effectiveness of the proposed framework. We show that by having a suitable problem setting for this problem with wide-applications, we can achieve much better detection accuracy than off-the-shelf online action detection models.
Most work on temporal action detection is formulated as an offline problem, in which the start and end times of actions are determined after the entire video is fully observed. However, important real-time applications including surveillance and driver assistance systems require identifying actions as soon as each video frame arrives, based only on current and historical observations. In this paper, we propose a novel framework, Temporal Recurrent Network (TRN), to model greater temporal context of a video frame by simultaneously performing online action detection and anticipation of the immediate future. At each moment in time, our approach makes use of both accumulated historical evidence and predicted future information to better recognize the action that is currently occurring, and integrates both of these into a unified end-to-end architecture. We evaluate our approach on two popular online action detection datasets, HDD and TVSeries, as well as another widely used dataset, THUMOS14. The results show that TRN significantly outperforms the state-of-the-art.
In this paper, we present Long Short-term TRansformer (LSTR), a new temporal modeling algorithm for online action detection, by employing a long- and short-term memories mechanism that is able to model prolonged sequence data. It consists of an LSTR encoder that is capable of dynamically exploiting coarse-scale historical information from an extensively long time window (e.g., 2048 long-range frames of up to 8 minutes), together with an LSTR decoder that focuses on a short time window (e.g., 32 short-range frames of 8 seconds) to model the fine-scale characterization of the ongoing event. Compared to prior work, LSTR provides an effective and efficient method to model long videos with less heuristic algorithm design. LSTR achieves significantly improved results on standard online action detection benchmarks, THUMOS14, TVSeries, and HACS Segment, over the existing state-of-the-art approaches. Extensive empirical analysis validates the setup of the long- and short-term memories and the design choices of LSTR.
We propose StartNet to address Online Detection of Action Start (ODAS) where action starts and their associated categories are detected in untrimmed, streaming videos. Previous methods aim to localize action starts by learning feature representations that can directly separate the start point from its preceding background. It is challenging due to the subtle appearance difference near the action starts and the lack of training data. Instead, StartNet decomposes ODAS into two stages: action classification (using ClsNet) and start point localization (using LocNet). ClsNet focuses on per-frame labeling and predicts action score distributions online. Based on the predicted action scores of the past and current frames, LocNet conducts class-agnostic start detection by optimizing long-term localization rewards using policy gradient methods. The proposed framework is validated on two large-scale datasets, THUMOS14 and ActivityNet. The experimental results show that StartNet significantly outperforms the state-of-the-art by 15%-30% p-mAP under the offset tolerance of 1-10 seconds on THUMOS14, and achieves comparable performance on ActivityNet with 10 times smaller time offset.
114 - Mingfei Gao , Yingbo Zhou , Ran Xu 2020
Online action detection in untrimmed videos aims to identify an action as it happens, which makes it very important for real-time applications. Previous methods rely on tedious annotations of temporal action boundaries for training, which hinders the scalability of online action detection systems. We propose WOAD, a weakly supervised framework that can be trained using only video-class labels. WOAD contains two jointly-trained modules, i.e., temporal proposal generator (TPG) and online action recognizer (OAR). Supervised by video-class labels, TPG works offline and targets at accurately mining pseudo frame-level labels for OAR. With the supervisory signals from TPG, OAR learns to conduct action detection in an online fashion. Experimental results on THUMOS14, ActivityNet1.2 and ActivityNet1.3 show that our weakly-supervised method largely outperforms weakly-supervised baselines and achieves comparable performance to the previous strongly-supervised methods. Beyond that, WOAD is flexible to leverage strong supervision when it is available. When strongly supervised, our method obtains the state-of-the-art results in the tasks of both online per-frame action recognition and online detection of action start.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا