Do you want to publish a course? Click here

Direct Numerical Simulations of the Swirling von Karman Flow Using a Semi-implicit Moving Immersed Boundary Method

118   0   0.0 ( 0 )
 Added by M. Houssem Kasbaoui
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a novel moving immersed boundary method (IBM) and employ it in direct numerical simulations (DNS) of the closed-vessel swirling von Karman flow in laminar and turbulent regimes. The IBM extends direct-forcing approaches by leveraging a time integration scheme, that embeds the immersed boundary forcing step within a semi-implicit iterative Crank-Nicolson scheme. The overall method is robust, stable, and yields excellent results in canonical cases with static and moving boundaries. The moving IBM allows us to reproduce the geometry and parameters of the swirling von Karman flow experiments in (F. Ravelet, A. Chiffaudel, and F. Daviaud, JFM 601, 339 (2008)) on a Cartesian grid. In these DNS, the flow is driven by two-counter rotating impellers fitted with curved inertial stirrers. We analyze the transition from laminar to turbulent flow by increasing the rotation rate of the counter-rotating impellers to attain the four Reynolds numbers 90, 360, 2000, and 4000. In the laminar regime at Reynolds number 90 and 360, we observe flow features similar to those reported in the experiments and in particular, the appearance of a symmetry-breaking instability at Reynolds number 360. We observe transitional turbulence at Reynolds number 2000. Fully developed turbulence is achieved at Reynolds number 4000. Non-dimensional torque computed from simulations matches correlations from experimental data. The low Reynolds number symmetries, lost with increasing Reynolds number, are recovered in the mean flow in the fully developed turbulent regime, where we observe two tori symmetrical about the mid-height plane. We note that turbulent fluctuations in the central region of the device remain anisotropic even at the highest Reynolds number 4000, suggesting that isotropization requires significantly higher Reynolds numbers.



rate research

Read More

561 - Nicolas Leprovost 2007
A stochastic model is derived to predict the turbulent torque produced by a swirling flow. It is a simple Langevin process, with a colored noise. Using the unified colored noise approximation, we derive analytically the PDF of the fluctuations of injected power in two forcing regimes: constant angular velocity or constant applied torque. In the limit of small velocity fluctuations and vanishing inertia, we predict that the injected power fluctuates twice less in the case of constant torque than in the case of constant angular velocity forcing. The model is further tested against experimental data in a von Karman device filled with water. It is shown to allow for a parameter-free prediction of the PDF of power fluctuations in the case where the forcing is made at constant torque. A physical interpretation of our model is finally given, using a quasi-linear model of turbulence.
We study magnetohydrodynamics in a von Karman flow driven by the rotation of impellers made of material with varying electrical conductivity and magnetic permeability. Gallium is the working fluid and magnetic Reynolds numbers of order unity are achieved. We find that specific induction effects arise when the impellers electric and magnetic characteristics differ from that of the fluid. Implications in regards to the VKS dynamo are discussed.
We experimentally characterize the fluctuations of the non-homogeneous non-isotropic turbulence in an axisymmetric von Karman flow. We show that these fluctuations satisfy relations analogous to classical Fluctuation-Dissipation Relations (FDRs) in statistical mechanics. We use these relations to measure statistical temperatures of turbulence. The values of these temperatures are found to be dependent on the considered observable as already evidenced in other far from equilibrium systems.
Turbulent flows under transcritical conditions are present in regenerative cooling systems of rocker engines and extraction processes in chemical engineering. The turbulent flows and the corresponding heat transfer phenomena in these complex processes are still not well understood experimentally and numerically. The objective of this work is to investigate the turbulent flows under transcritical conditions using DNS of turbulent channel flows. A fully compressible solver is used in conjunction with a Peng-Robinson real-fluid equation of state to describe the transcritical flows. A channel flow with two isothermal walls is simulated with one heated and one cooled boundary layers. The grid resolution adopted in this study is slightly finer than that required for DNS of incompressible channel flows. The simulations are conducted using both fully (FC) and quasi-conservative (QC) schemes to assess their performance for transcritical wall-bounded flows. The instantaneous flows and the statistics are analyzed and compared with the canonical theories. It is found that results from both FC and QC schemes qualitatively agree well with noticeable difference near the top heated wall, where spurious oscillations in velocity can be observed. Using the DNS data, we then examine the usefulness of Townsend attached eddy hypothesis in the context of flows at transcritical conditions. It is shown that the streamwise energy spectrum exhibits the inverse wavenumber scaling and that the streamwise velocity structure function follows a logarithmic scaling, thus providing support to the attached eddy model at transcritical conditions.
The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this coupled Multiphysics problem. The fluid motion was solved by Palabos (Parallel Lattice Boltzmann Solver), while the solid displacement and deformation was simulated by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The coupling was achieved through the immersed boundary method (IBM). The code modeled both rigid and deformable solids exposed to flow. The code was validated with the Jeffery orbits of an ellipsoid particle in shear flow, red blood cell stretching test, and effective blood viscosity flowing in tubes. It demonstrated essentially linear scaling from 512 to 8192 cores for both strong and weak scaling cases. The computing time for the coupling increased with the solid fraction. An example of the fluid-solid coupling was given for flexible filaments (drug carriers) transport in a flowing blood cell suspensions, highlighting the advantages and capabilities of the developed code.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا