Do you want to publish a course? Click here

Blocking Adversarial Influence in Social Networks

77   0   0.0 ( 0 )
 Added by Feiran Jia
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

While social networks are widely used as a media for information diffusion, attackers can also strategically employ analytical tools, such as influence maximization, to maximize the spread of adversarial content through the networks. We investigate the problem of limiting the diffusion of negative information by blocking nodes and edges in the network. We formulate the interaction between the defender and the attacker as a Stackelberg game where the defender first chooses a set of nodes to block and then the attacker selects a set of seeds to spread negative information from. This yields an extremely complex bi-level optimization problem, particularly since even the standard influence measures are difficult to compute. Our approach is to approximate the attackers problem as the maximum node domination problem. To solve this problem, we first develop a method based on integer programming combined with constraint generation. Next, to improve scalability, we develop an approximate solution method that represents the attackers problem as an integer program, and then combines relaxation with duality to yield an upper bound on the defenders objective that can be computed using mixed integer linear programming. Finally, we propose an even more scalable heuristic method that prunes nodes from the consideration set based on their degree. Extensive experiments demonstrate the efficacy of our approaches.



rate research

Read More

467 - Xinran He , Guojie Song , Wei Chen 2011
In many real-world situations, different and often opposite opinions, innovations, or products are competing with one another for their social influence in a networked society. In this paper, we study competitive influence propagation in social networks under the competitive linear threshold (CLT) model, an extension to the classic linear threshold model. Under the CLT model, we focus on the problem that one entity tries to block the influence propagation of its competing entity as much as possible by strategically selecting a number of seed nodes that could initiate its own influence propagation. We call this problem the influence blocking maximization (IBM) problem. We prove that the objective function of IBM in the CLT model is submodular, and thus a greedy algorithm could achieve 1-1/e approximation ratio. However, the greedy algorithm requires Monte-Carlo simulations of competitive influence propagation, which makes the algorithm not efficient. We design an efficient algorithm CLDAG, which utilizes the properties of the CLT model, to address this issue. We conduct extensive simulations of CLDAG, the greedy algorithm, and other baseline algorithms on real-world and synthetic datasets. Our results show that CLDAG is able to provide best accuracy in par with the greedy algorithm and often better than other algorithms, while it is two orders of magnitude faster than the greedy algorithm.
The operation of adding edges has been frequently used to the study of opinion dynamics in social networks for various purposes. In this paper, we consider the edge addition problem for the DeGroot model of opinion dynamics in a social network with $n$ nodes and $m$ edges, in the presence of a small number $s ll n$ of competing leaders with binary opposing opinions 0 or 1. Concretely, we pose and investigate the problem of maximizing the equilibrium overall opinion by creating $k$ new edges in a candidate edge set, where each edge is incident to a 1-valued leader and a follower node. We show that the objective function is monotone and submodular. We then propose a simple greedy algorithm with an approximation factor $(1-frac{1}{e})$ that approximately solves the problem in $O(n^3)$ time. Moreover, we provide a fast algorithm with a $(1-frac{1}{e}-epsilon)$ approximation ratio and $tilde{O}(mkepsilon^{-2})$ time complexity for any $epsilon>0$, where $tilde{O}(cdot)$ notation suppresses the ${rm poly} (log n)$ factors. Extensive experiments demonstrate that our second approximate algorithm is efficient and effective, which scales to large networks with more than a million nodes.
153 - Yixin Bao , Xiaoke Wang , Zhi Wang 2016
Social networks have been popular platforms for information propagation. An important use case is viral marketing: given a promotion budget, an advertiser can choose some influential users as the seed set and provide them free or discounted sample products; in this way, the advertiser hopes to increase the popularity of the product in the users friend circles by the world-of-mouth effect, and thus maximizes the number of users that information of the production can reach. There has been a body of literature studying the influence maximization problem. Nevertheless, the existing studies mostly investigate the problem on a one-off basis, assuming fixed known influence probabilities among users, or the knowledge of the exact social network topology. In practice, the social network topology and the influence probabilities are typically unknown to the advertiser, which can be varying over time, i.e., in cases of newly established, strengthened or weakened social ties. In this paper, we focus on a dynamic non-stationary social network and design a randomized algorithm, RSB, based on multi-armed bandit optimization, to maximize influence propagation over time. The algorithm produces a sequence of online decisions and calibrates its explore-exploit strategy utilizing outcomes of previous decisions. It is rigorously proven to achieve an upper-bounded regret in reward and applicable to large-scale social networks. Practical effectiveness of the algorithm is evaluated using both synthetic and real-world datasets, which demonstrates that our algorithm outperforms previous stationary methods under non-stationary conditions.
Influence overlap is a universal phenomenon in influence spreading for social networks. In this paper, we argue that the redundant influence generated by influence overlap cause negative effect for maximizing spreading influence. Firstly, we present a theoretical method to calculate the influence overlap and record the redundant influence. Then in term of eliminating redundant influence, we present two algorithms, namely, Degree-Redundant-Influence (DRS) and Degree-Second-Neighborhood (DSN) for multiple spreaders identification. The experiments for four empirical social networks successfully verify the methods, and the spreaders selected by the DSN algorithm show smaller degree and k-core values.
Existing socio-psychological studies suggest that users of a social network form their opinions relying on the opinions of their neighbors. According to DeGroot opinion formation model, one value of particular importance is the asymptotic consensus value---the sum of user opinions weighted by the users eigenvector centralities. This value plays the role of an attractor for the opinions in the network and is a lucrative target for external influence. However, since any potentially malicious control of the opinion distribution in a social network is clearly undesirable, it is important to design methods to prevent the external attempts to strategically change the asymptotic consensus value. In this work, we assume that the adversary wants to maximize the asymptotic consensus value by altering the opinions of some users in a network; we, then, state DIVER---an NP-hard problem of disabling such external influence attempts by strategically adding a limited number of edges to the network. Relying on the theory of Markov chains, we provide perturbation analysis that shows how eigenvector centrality and, hence, DIVERs objective function change in response to an edges addition to the network. The latter leads to the design of a pseudo-linear-time heuristic for DIVER, whose computation relies on efficient estimation of mean first passage times in a Markov chain. We confirm our theoretical findings in experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا