No Arabic abstract
Coprime arrays enable Direction-of-Arrival (DoA) estimation of an increased number of sources. To that end, the receiver estimates the autocorrelation matrix of a larger virtual uniform linear array (coarray), by applying selection or averaging to the physical arrays autocorrelation estimates, followed by spatial-smoothing. Both selection and averaging have been designed under no optimality criterion and attain arbitrary (suboptimal) Mean-Squared-Error (MSE) estimation performance. In this work, we design a novel coprime array receiver that estimates the coarray autocorrelations with Minimum-MSE (MMSE), for any probability distribution of the source DoAs. Our extensive numerical evaluation illustrates that the proposed MMSE approach returns superior autocorrelation estimates which, in turn, enable higher DoA estimation performance compared to standard counterparts.
We propose a decentralized receiver for extra-large multiple-input multiple-output (XL-MIMO) arrays. Our method operates with no central processing unit (CPU) and all the signal detection tasks are done in distributed nodes. We exploit a combined message-passing framework to design an uncoordinated detection scheme that overcomes three major challenges in the XL-MIMO systems: computational complexity, scalability and non-stationarities in user energy distribution. Our numerical evaluations show a significant performance improvement compared to benchmark distributed methods while operating very close to the centralized receivers.
In this letter, we introduce a novel mixed terahertz (THz)-radio frequency (RF) wireless system architecture, which can be used for backhaul/fronthaul applications, and we deliver the theoretical framework for its performance assessment. In more detail, after identifying the main design parameters and characteristics, we derive novel closed-form expressions for the end-to-end signal-to-noise ratio cumulative density function, the outage probability, and the symbol error rate, assuming that the system experiences the joint effect of fading and stochastic antenna misalignment. The derived analytical framework is verified through simulations and quantifies the systems effectiveness and reliability. Finally, our results contribute to the extraction of useful design guidelines.
Intelligent reflecting surface (IRS) has emerged as a promising paradigm to improve the capacity and reliability of a wireless communication system by smartly reconfiguring the wireless propagation environment. To achieve the promising gains of IRS, the acquisition of the channel state information (CSI) is essential, which however is practically difficult since the IRS does not employ any transmit/receive radio frequency (RF) chains in general and it has limited signal processing capability. In this paper, we study the uplink channel estimation problem for an IRS-aided multiuser single-input multi-output (SIMO) system, and propose a novel two-phase channel estimation (2PCE) strategy which can alleviate the negative effects caused by error propagation in the existing three-phase channel estimation approach, i.e., the channel estimation errors in previous phases will deteriorate the estimation performance in later phases, and enhance the channel estimation performance with the same amount of channel training overhead as in the existing approach. Moreover, the asymptotic mean squared error (MSE) of the 2PCE strategy is analyzed when the least-square (LS) channel estimation method is employed, and we show that the 2PCE strategy can outperform the existing approach. Finally, extensive simulation results are presented to validate the effectiveness of the 2PCE strategy.
In this work we consider a multiple-input multiple-output (MIMO) dual-function radar-communication (DFRC) system that employs an orthogonal frequency division multiplexing (OFDM) and a differential phase shift keying (DPSK) modulation, and study the design of the radiated waveforms and of the receive filters employed by the radar and the users. The approach is communication-centric, in the sense that a radar-oriented objective is optimized under constraints on the average transmit power, the power leakage towards specific directions, and the error rate of each user, thus safeguarding the communication quality of service (QoS). We adopt a unified design approach allowing a broad family of radar objectives, including both estimation- and detection-oriented merit functions. We devise a suboptimal solution based on alternating optimization of the involved variables, a convex restriction of the feasible search set, and minorization-maximization, offering a single algorithm for all of the radar merit functions in the considered family. Finally, the performance is inspected through numerical examples.
Multi-class classification is mandatory for real world problems and one of promising techniques for multi-class classification is Error Correcting Output Code. We propose a method for constructing the Error Correcting Output Code to obtain the suitable combination of positive and negative classes encoded to represent binary classifiers. The minimum weight perfect matching algorithm is applied to find the optimal pairs of subset of classes by using the generalization performance as a weighting criterion. Based on our method, each subset of classes with positive and negative labels is appropriately combined for learning the binary classifiers. Experimental results show that our technique gives significantly higher performance compared to traditional methods including the dense random code and the sparse random code both in terms of accuracy and classification times. Moreover, our method requires significantly smaller number of binary classifiers while maintaining accuracy compared to the One-Versus-One.