Do you want to publish a course? Click here

Sub-Classifier Construction for Error Correcting Output Code Using Minimum Weight Perfect Matching

360   0   0.0 ( 0 )
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

Multi-class classification is mandatory for real world problems and one of promising techniques for multi-class classification is Error Correcting Output Code. We propose a method for constructing the Error Correcting Output Code to obtain the suitable combination of positive and negative classes encoded to represent binary classifiers. The minimum weight perfect matching algorithm is applied to find the optimal pairs of subset of classes by using the generalization performance as a weighting criterion. Based on our method, each subset of classes with positive and negative labels is appropriately combined for learning the binary classifiers. Experimental results show that our technique gives significantly higher performance compared to traditional methods including the dense random code and the sparse random code both in terms of accuracy and classification times. Moreover, our method requires significantly smaller number of binary classifiers while maintaining accuracy compared to the One-Versus-One.



rate research

Read More

94 - Sungsoo Ahn 2015
Max-product Belief Propagation (BP) is a popular message-passing algorithm for computing a Maximum-A-Posteriori (MAP) assignment over a distribution represented by a Graphical Model (GM). It has been shown that BP can solve a number of combinatorial optimization problems including minimum weight matching, shortest path, network flow and vertex cover under the following common assumption: the respective Linear Programming (LP) relaxation is tight, i.e., no integrality gap is present. However, when LP shows an integrality gap, no model has been known which can be solved systematically via sequential applications of BP. In this paper, we develop the first such algorithm, coined Blossom-BP, for solving the minimum weight matching problem over arbitrary graphs. Each step of the sequential algorithm requires applying BP over a modified graph constructed by contractions and expansions of blossoms, i.e., odd sets of vertices. Our scheme guarantees termination in O(n^2) of BP runs, where n is the number of vertices in the original graph. In essence, the Blossom-BP offers a distributed version of the celebrated Edmonds Blossom algorithm by jumping at once over many sub-steps with a single BP. Moreover, our result provides an interpretation of the Edmonds algorithm as a sequence of LPs.
Inexpensive cloud services, such as serverless computing, are often vulnerable to straggling nodes that increase end-to-end latency for distributed computation. We propose and implement simple yet principled approaches for straggler mitigation in serverless systems for matrix multiplication and evaluate them on several common applications from machine learning and high-performance computing. The proposed schemes are inspired by error-correcting codes and employ parallel encoding and decoding over the data stored in the cloud using serverless workers. This creates a fully distributed computing framework without using a master node to conduct encoding or decoding, which removes the computation, communication and storage bottleneck at the master. On the theory side, we establish that our proposed scheme is asymptotically optimal in terms of decoding time and provide a lower bound on the number of stragglers it can tolerate with high probability. Through extensive experiments, we show that our scheme outperforms existing schemes such as speculative execution and other coding theoretic methods by at least 25%.
The use of Reinforcement Learning in real-world scenarios is strongly limited by issues of scale. Most RL learning algorithms are unable to deal with problems composed of hundreds or sometimes even dozens of possible actions, and therefore cannot be applied to many real-world problems. We consider the RL problem in the supervised classification framework where the optimal policy is obtained through a multiclass classifier, the set of classes being the set of actions of the problem. We introduce error-correcting output codes (ECOCs) in this setting and propose two new methods for reducing complexity when using rollouts-based approaches. The first method consists in using an ECOC-based classifier as the multiclass classifier, reducing the learning complexity from O(A2) to O(Alog(A)). We then propose a novel method that profits from the ECOCs coding dictionary to split the initial MDP into O(log(A)) seperate two-action MDPs. This second method reduces learning complexity even further, from O(A2) to O(log(A)), thus rendering problems with large action sets tractable. We finish by experimentally demonstrating the advantages of our approach on a set of benchmark problems, both in speed and performance.
A binary 1-error-correcting code can always be embedded in a 1-perfect code of some larger length
116 - Austin G. Fowler 2013
Consider a 2-D square array of qubits of extent $Ltimes L$. We provide a proof that the minimum weight perfect matching problem associated with running a particular class of topological quantum error correction codes on this array can be exactly solved with a 2-D square array of classical computing devices, each of which is nominally associated with a fixed number $N$ of qubits, in constant average time per round of error detection independent of $L$ provided physical error rates are below fixed nonzero values, and other physically reasonable assumptions. This proof is applicable to the fully fault-tolerant case only, not the case of perfect stabilizer measurements.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا