No Arabic abstract
The spontaneous magnetic orders arising in ferro-, ferri- and antiferromagnets stem from various magnetic interactions. Depending on the interplay and competition among the Heisenberg exchange interaction, Dzyaloshinskii-Moriya exchange interaction, magnetic dipolar interaction and crystal anisotropies, a great variety of magnetic textures may be stabilized, such as magnetic domain walls, vortices, Skyrmions and spiral helical structures. While each of these spin textures responds to external forces in a specific manner with characteristic resonance frequencies, they also interact with magnons, the fundamental collective excitation of the magnetic order, which can propagate in magnetic materials free of charge transport and therefore with low energy dissipation. Recent theories and experiments found that the interplay between spin waves and magnetic textures is particularly interesting and rich in physics. In this review, we introduce and discuss the theoretical framework of magnons living on a magnetic texture background, as well as recent experimental progress in the manipulation of magnons via magnetic textures. The flexibility and reconfigurability of magnetic textures are discussed regarding the potential for applications in information processing schemes based on magnons.
Engineered quantum systems enabling novel capabilities for communication, computation, and sensing have blossomed in the last decade. Architectures benefiting from combining distinct and complementary physical quantum systems have emerged as promising platforms for developing quantum technologies. A new class of hybrid quantum systems based on collective spin excitations in ferromagnetic materials has led to the diverse set of experimental platforms which are outlined in this review article. The coherent interaction between microwave cavity modes and collective spin-wave modes is presented as the backbone of the development of more complex hybrid quantum systems. Indeed, quanta of excitation of the spin-wave modes, called magnons, can also interact coherently with optical photons, phonons, and superconducting qubits in the fields of cavity optomagnonics, cavity magnomechanics, and quantum magnonics, respectively. Notably, quantum magnonics provides a promising platform for performing quantum optics experiments in magnetically-ordered solid-state systems. Applications of hybrid quantum systems based on magnonics for quantum information processing and quantum sensing are also outlined briefly.
Spin wave, the collective excitation of magnetic order, is one of the fundamental angular momentum carriers in magnetic systems. Understanding the spin wave propagation in magnetic textures lies in the heart of developing pure magnetic information processing schemes. Here we show that the spin wave propagation across a chiral domain wall follows simple geometric trajectories, similar to the geometric optics. And the geometric behaviors are qualitatively different in normally magnetized film and tangentially magnetized film. We identify the lateral shift, refraction, and total reflection of spin wave across a ferromagnetic domain wall. Moreover, these geometric scattering phenomena become polarization-dependent in antiferromagnets, indicating the emergence of spin wave birefringence inside antiferromagnetic domain wall.
The techniques of microwave quantum optics are applied to collective spin excitations in a macroscopic sphere of ferromagnetic insulator. We demonstrate, in the single-magnon limit, strong coupling between a magnetostatic mode in the sphere and a microwave cavity mode. Moreover, we introduce a superconducting qubit in the cavity and couple the qubit with the magnon excitation via the virtual photon excitation. We observe the magnon-vacuum-induced Rabi splitting. The hybrid quantum system enables generation and characterization of non-classical quantum states of magnons.
Collective excitation modes in solid state systems play a central role in circuit quantum electrodynamics, cavity optomechanics, and quantum magnonics. In the latter, quanta of collective excitation modes in a ferromagnet, called magnons, interact with qubits to provide the nonlinearity necessary to access quantum phenomena in magnonics. A key ingredient for future quantum magnonics systems is the ability to probe magnon states. Here we observe individual magnons in a millimeter-sized ferromagnet coherently coupled to a superconducting qubit. Specifically, we resolve magnon number states in spectroscopic measurements of a transmon qubit with the hybrid system in the strong dispersive regime. This enables us to detect a change in the magnetic dipole of the ferromagnet equivalent to a single spin flipped among more than $10^{19}$ spins. The strong dispersive regime of quantum magnonics opens up the possibility of encoding superconducting qubits into non-classical magnon states, potentially providing a coherent interface between a superconducting quantum processor and optical photons.
We demonstrate theoretically that in a spintronic diode (SD), having a free magnetic layer with perpendicular magnetic anisotropy of the first and second order and no external bias magnetic field, the out-of-plane regime of magnetization precession can be excited by sufficiently large (exceeding a certain threshold) RF signals with the frequencies <~250 MHz. We also show that such a device can operate as a broadband energy harvester capable of converting incident RF power into a DC power with the conversion efficiency of ~5%. The developed analytical theory of the bias-free SD operation can be used for the optimization of high-efficiency RF detectors and energy harvesters based on SDs.