Do you want to publish a course? Click here

Modeling Atmospheric Data and Identifying Dynamics: Temporal Data-Driven Modeling of Air Pollutants

75   0   0.0 ( 0 )
 Added by Carlos M. Ortiz
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Atmospheric modeling has recently experienced a surge with the advent of deep learning. Most of these models, however, predict concentrations of pollutants following a data-driven approach in which the physical laws that govern their behaviors and relationships remain hidden. With the aid of real-world air quality data collected hourly in different stations throughout Madrid, we present an empirical approach using data-driven techniques with the following goals: (1) Find parsimonious systems of ordinary differential equations via sparse identification of nonlinear dynamics (SINDy) that model the concentration of pollutants and their changes over time; (2) assess the performance and limitations of our models using stability analysis; (3) reconstruct the time series of chemical pollutants not measured in certain stations using delay coordinate embedding results. Our results show that Akaikes Information Criterion can work well in conjunction with best subset regression as to find an equilibrium between sparsity and goodness of fit. We also find that, due to the complexity of the chemical system under study, identifying the dynamics of this system over longer periods of time require higher levels of data filtering and smoothing. Stability analysis for the reconstructed ordinary differential equations (ODEs) reveals that more than half of the physically relevant critical points are saddle points, suggesting that the system is unstable even under the idealized assumption that all environmental conditions are constant over time.

rate research

Read More

Understanding temporal information and how the visual world changes over time is a fundamental ability of intelligent systems. In video understanding, temporal information is at the core of many current challenges, including compression, efficient inference, motion estimation or summarization. However, in current video datasets it has been observed that action classes can often be recognized without any temporal information from a single frame of video. As a result, both benchmarking and training in these datasets may give an unintentional advantage to models with strong image understanding capabilities, as opposed to those with strong temporal understanding. In this paper we address this problem head on by identifying action classes where temporal information is actually necessary to recognize them and call these temporal classes. Selecting temporal classes using a computational method would bias the process. Instead, we propose a methodology based on a simple and effective human annotation experiment. We remove just the temporal information by shuffling frames in time and measure if the action can still be recognized. Classes that cannot be recognized when frames are not in order are included in the temporal Dataset. We observe that this set is statistically different from other static classes, and that performance in it correlates with a networks ability to capture temporal information. Thus we use it as a benchmark on current popular networks, which reveals a series of interesting facts. We also explore the effect of training on the temporal dataset, and observe that this leads to better generalization in unseen classes, demonstrating the need for more temporal data. We hope that the proposed dataset of temporal categories will help guide future research in temporal modeling for better video understanding.
Many real-world problems require to optimise trajectories under constraints. Classical approaches are based on optimal control methods but require an exact knowledge of the underlying dynamics, which could be challenging or even out of reach. In this paper, we leverage data-driven approaches to design a new end-to-end framework which is dynamics-free for optimised and realistic trajectories. We first decompose the trajectories on function basis, trading the initial infinite dimension problem on a multivariate functional space for a parameter optimisation problem. A maximum emph{a posteriori} approach which incorporates information from data is used to obtain a new optimisation problem which is regularised. The penalised term focuses the search on a region centered on data and includes estimated linear constraints in the problem. We apply our data-driven approach to two settings in aeronautics and sailing routes optimisation, yielding commanding results. The developed approach has been implemented in the Python library PyRotor.
A model for tokamak discharge through deep learning has been done on a superconducting long-pulse tokamak (EAST). This model can use the control signals (i.e. Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH), etc) to model normal discharge without the need for doing real experiments. By using the data-driven methodology, we exploit the temporal sequence of control signals for a large set of EAST discharges to develop a deep learning model for modeling discharge diagnostic signals, such as electron density $n_{e}$, store energy $W_{mhd}$ and loop voltage $V_{loop}$. Comparing the similar methodology, we use Machine Learning techniques to develop the data-driven model for discharge modeling rather than disruption prediction. Up to 95% similarity was achieved for $W_{mhd}$. The first try showed promising results for modeling of tokamak discharge by using the data-driven methodology. The data-driven methodology provides an alternative to physical-driven modeling for tokamak discharge modeling.
Disaster recovery is widely regarded as the least understood phase of the disaster cycle. In particular, the literature around lifeline infrastructure restoration modeling frequently mentions the lack of empirical quantitative data available. Despite limitations, there is a growing body of research on modeling lifeline infrastructure restoration, often developed using empirical quantitative data. This study reviews this body of literature and identifies the data collection and usage patterns present across modeling approaches to inform future efforts using empirical quantitative data. We classify the modeling approaches into simulation, optimization, and statistical modeling. The number of publications in this domain has increased over time with the most rapid growth of statistical modeling. Electricity infrastructure restoration is most frequently modeled, followed by the restoration of multiple infrastructures, water infrastructure, and transportation infrastructure. Interdependency between multiple infrastructures is increasingly considered in recent literature. Researchers gather the data from a variety of sources, including collaborations with utility companies, national databases, and post-event damage and restoration reports. This study provides discussion and recommendations around data usage practices within the lifeline restoration modeling field. Following the recommendations would facilitate the development of a community of practice around restoration modeling and provide greater opportunities for future data sharing.
Nowadays, the prevalence of sensor networks has enabled tracking of the states of dynamic objects for a wide spectrum of applications from autonomous driving to environmental monitoring and urban planning. However, tracking real-world objects often faces two key challenges: First, due to the limitation of individual sensors, state estimation needs to be solved in a collaborative and distributed manner. Second, the objects movement behavior is unknown, and needs to be learned using sensor observations. In this work, for the first time, we formally formulate the problem of simultaneous state estimation and behavior learning in a sensor network. We then propose a simple yet effective solution to this new problem by extending the Gaussian process-based Bayes filters (GP-BayesFilters) to an online, distributed setting. The effectiveness of the proposed method is evaluated on tracking objects with unknown movement behaviors using both synthetic data and data collected from a multi-robot platform.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا