Do you want to publish a course? Click here

Data-Driven Distributed State Estimation and Behavior Modeling in Sensor Networks

123   0   0.0 ( 0 )
 Added by Rui Yu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Nowadays, the prevalence of sensor networks has enabled tracking of the states of dynamic objects for a wide spectrum of applications from autonomous driving to environmental monitoring and urban planning. However, tracking real-world objects often faces two key challenges: First, due to the limitation of individual sensors, state estimation needs to be solved in a collaborative and distributed manner. Second, the objects movement behavior is unknown, and needs to be learned using sensor observations. In this work, for the first time, we formally formulate the problem of simultaneous state estimation and behavior learning in a sensor network. We then propose a simple yet effective solution to this new problem by extending the Gaussian process-based Bayes filters (GP-BayesFilters) to an online, distributed setting. The effectiveness of the proposed method is evaluated on tracking objects with unknown movement behaviors using both synthetic data and data collected from a multi-robot platform.



rate research

Read More

This paper proposes a method to navigate a mobile robot by estimating its state over a number of distributed sensor networks (DSNs) such that it can successively accomplish a sequence of tasks, i.e., its state enters each targeted set and stays inside no less than the desired time, under a resource-aware, time-efficient, and computation- and communication-constrained setting.We propose a new robot state estimation and navigation architecture, which integrates an event-triggered task-switching feedback controller for the robot and a two-time-scale distributed state estimator for each sensor. The architecture has three major advantages over existing approaches: First, in each task only one DSN is active for sensing and estimating the robot state, and for different tasks the robot can switch the active DSN by taking resource saving and system performance into account; Second, the robot only needs to communicate with one active sensor at each time to obtain its state information from the active DSN; Third, no online optimization is required. With the controller, the robot is able to accomplish a task by following a reference trajectory and switch to the next task when an event-triggered condition is fulfilled. With the estimator, each active sensor is able to estimate the robot state. Under proper conditions, we prove that the state estimation error and the trajectory tracking deviation are upper bounded by two time-varying sequences respectively, which play an essential role in the event-triggered condition. Furthermore, we find a sufficient condition for accomplishing a task and provide an upper bound of running time for the task. Numerical simulations of an indoor robots localization and navigation are provided to validate the proposed architecture.
We present the Koopman State Estimator (KoopSE), a framework for model-free batch state estimation of control-affine systems that makes no linearization assumptions, requires no problem-specific feature selections, and has an inference computational cost that is independent of the number of training points. We lift the original nonlinear system into a higher-dimensional Reproducing Kernel Hilbert Space (RKHS), where the system becomes bilinear. The time-invariant model matrices can be learned by solving a least-squares problem on training trajectories. At test time, the system is algebraically manipulated into a linear time-varying system, where standard batch linear state estimation techniques can be used to efficiently compute state means and covariances. Random Fourier Features (RFF) are used to combine the computational efficiency of Koopman-based methods and the generality of kernel-embedding methods. KoopSE is validated experimentally on a localization task involving a mobile robot equipped with ultra-wideband receivers and wheel odometry. KoopSE estimates are more accurate and consistent than the standard model-based extended Rauch-Tung-Striebel (RTS) smoother, despite KoopSE having no prior knowledge of the systems motion or measurement models.
In this paper, we tackle the problem of relational behavior forecasting from sensor data. Towards this goal, we propose a novel spatially-aware graph neural network (SpAGNN) that models the interactions between agents in the scene. Specifically, we exploit a convolutional neural network to detect the actors and compute their initial states. A graph neural network then iteratively updates the actor states via a message passing process. Inspired by Gaussian belief propagation, we design the messages to be spatially-transformed parameters of the output distributions from neighboring agents. Our model is fully differentiable, thus enabling end-to-end training. Importantly, our probabilistic predictions can model uncertainty at the trajectory level. We demonstrate the effectiveness of our approach by achieving significant improvements over the state-of-the-art on two real-world self-driving datasets: ATG4D and nuScenes.
The paper studies distributed static parameter (vector) estimation in sensor networks with nonlinear observation models and noisy inter-sensor communication. It introduces emph{separably estimable} observation models that generalize the observability condition in linear centralized estimation to nonlinear distributed estimation. It studies two distributed estimation algorithms in separably estimable models, the $mathcal{NU}$ (with its linear counterpart $mathcal{LU}$) and the $mathcal{NLU}$. Their update rule combines a emph{consensus} step (where each sensor updates the state by weight averaging it with its neighbors states) and an emph{innovation} step (where each sensor processes its local current observation.) This makes the three algorithms of the textit{consensus + innovations} type, very different from traditional consensus. The paper proves consistency (all sensors reach consensus almost surely and converge to the true parameter value,) efficiency, and asymptotic unbiasedness. For $mathcal{LU}$ and $mathcal{NU}$, it proves asymptotic normality and provides convergence rate guarantees. The three algorithms are characterized by appropriately chosen decaying weight sequences. Algorithms $mathcal{LU}$ and $mathcal{NU}$ are analyzed in the framework of stochastic approximation theory; algorithm $mathcal{NLU}$ exhibits mixed time-scale behavior and biased perturbations, and its analysis requires a different approach that is developed in the paper.
In this paper, a novel framework is proposed to perform data-driven air-to-ground (A2G) channel estimation for millimeter wave (mmWave) communications in an unmanned aerial vehicle (UAV) wireless network. First, an effective channel estimation approach is developed to collect mmWave channel information, allowing each UAV to train a stand-alone channel model via a conditional generative adversarial network (CGAN) along each beamforming direction. Next, in order to expand the application scenarios of the trained channel model into a broader spatial-temporal domain, a cooperative framework, based on a distributed CGAN architecture, is developed, allowing each UAV to collaboratively learn the mmWave channel distribution in a fully-distributed manner. To guarantee an efficient learning process, necessary and sufficient conditions for the optimal UAV network topology that maximizes the learning rate for cooperative channel modeling are derived, and the optimal CGAN learning solution per UAV is subsequently characterized, based on the distributed network structure. Simulation results show that the proposed distributed CGAN approach is robust to the local training error at each UAV. Meanwhile, a larger airborne network size requires more communication resources per UAV to guarantee an efficient learning rate. The results also show that, compared with a stand-alone CGAN without information sharing and two other distributed schemes, namely: A multi-discriminator CGAN and a federated CGAN method, the proposed distributed CGAN approach yields a higher modeling accuracy while learning the environment, and it achieves a larger average data rate in the online performance of UAV downlink mmWave communications.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا