No Arabic abstract
When using spectral methods, a question arises as how to determine the expansion order, especially for time-dependent problems in which emerging oscillations may require adjusting the expansion order. In this paper, we propose a frequency-dependent $p$-adaptive technique that adaptively adjusts the expansion order based on a frequency indicator. Using this $p$-adaptive technique, combined with recently proposed scaling and moving techniques, we are able to devise an adaptive spectral method in unbounded domains that can capture and handle diffusion, advection, and oscillations. As an application, we use this adaptive spectral method to numerically solve the Schr{o}dinger equation in the whole domain and successfully capture the solutions oscillatory behavior at infinity.
Pseudospectral numerical schemes for solving the Dirac equation in general static curved space are derived using a pseudodifferential representation of the Dirac equation along with a simple Fourier-basis technique. Owing to the presence of non-constant coefficients in the curved space Dirac equation, convolution products usually appear when the Fourier transform is performed. The strategy based on pseudodifferential operators allows for efficient computations of these convolution products by using an ordinary fast Fourier transform algorithm. The resulting numerical methods are efficient and have spectral convergence. Simultaneously, wave absorption at the boundary can be easily derived using absorbing layers to cope with some potential negative effects of periodic conditions inherent to spectral methods. The numerical schemes are first tested on simple systems to verify the convergence and are then applied to the dynamics of charge carriers in strained graphene.
We build a multi-element variant of the smoothness increasing accuracy conserving (SIAC) shock capturing technique proposed for single element spectral methods by Wissink et al. (B.W. Wissink, G.B. Jacobs, J.K. Ryan, W.S. Don, and E.T.A. van der Weide. Shock regularization with smoothness-increasing accuracy-conserving Dirac-delta polynomial kernels. Journal of Scientific Computing, 77:579--596, 2018). In particular, the baseline scheme of our method is the nodal discontinuous Galerkin spectral element method (DGSEM) for approximating the solution of systems of conservation laws. It is well known that high-order methods generate spurious oscillations near discontinuities which can develop in the solution for nonlinear problems, even when the initial data is smooth. We propose a novel multi-element SIAC filtering technique applied to the DGSEM as a shock capturing method. We design the SIAC filtering such that the numerical scheme remains high-order accurate and that the shock capturing is applied adaptively throughout the domain. The shock capturing method is derived for general systems of conservation laws. We apply the novel SIAC filter to the two-dimensional Euler and ideal magnetohydrodynamics (MHD) equations to several standard test problems with a variety of boundary conditions.
Hybrid quantum/molecular mechanics models (QM/MM methods) are widely used in material and molecular simulations when MM models do not provide sufficient accuracy but pure QM models are computationally prohibitive. Adaptive QM/MM coupling methods feature on-the-fly classification of atoms during the simulation, allowing the QM and MM subsystems to be updated as needed. In this work, we propose such an adaptive QM/MM method for material defect simulations based on a new residual based it a posteriori error estimator, which provides both lower and upper bounds for the true error. We validate the analysis and illustrate the effectiveness of the new scheme on numerical simulations for material defects.
We present a novel preconditioning technique for Krylov subspace algorithms to solve fluid-structure interaction (FSI) linearized systems arising from finite element discretizations. An outer Krylov subspace solver preconditioned with a geometric multigrid (GMG) algorithm is used, where for the multigrid level sub-solvers, a field-split (FS) preconditioner is proposed. The block structure of the FS preconditioner is derived using the physical variables as splitting strategy. To solve the subsystems originated by the FS preconditioning, an additive Schwarz (AS) block strategy is employed. The proposed field-split preconditioner is tested on biomedical FSI applications. Both 2D and 3D simulations are carried out considering aneurysm and venous valve geometries. The performance of the FS preconditioner is compared with that of a second preconditioner of pure domain decomposition type.
Sparse spectral methods for solving partial differential equations have been derived in recent years using hierarchies of classical orthogonal polynomials on intervals, disks, and triangles. In this work we extend this methodology to a hierarchy of non-classical orthogonal polynomials on disk slices (e.g. a half-disk) and trapeziums. This builds on the observation that sparsity is guaranteed due to the boundary being defined by an algebraic curve, and that the entries of partial differential operators can be determined using formulae in terms of (non-classical) univariate orthogonal polynomials. We apply the framework to solving the Poisson, variable coefficient Helmholtz, and Biharmonic equations.