Do you want to publish a course? Click here

The impact of turbulent mixing on the galactic r-process enrichment by binary neutron star mergers

66   0   0.0 ( 0 )
 Added by Irina Dvorkin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the enrichment of the interstellar medium with rapid neutron capture (r-process) elements produced in binary neutron star (BNS) mergers. We use a semi-analytic model to describe galactic evolution, with merger rates and time delay distributions of BNS mergers consistent with the latest population synthesis models. In order to study the dispersion of the relative abundances of r-process elements and iron, we applied a turbulent mixing scheme, where the freshly synthesized elements are gradually dispersed in the interstellar medium. We show that within our model the abundances observed in Milky-Way stars, in particular the scatter at low metallicities, can be entirely explained by BNS mergers. Our results suggest that binary neutron star mergers could be the dominant source of r-process elements in the Galaxy.



rate research

Read More

Star-to-star dispersion of r-process elements has been observed in a significant number of old, metal-poor globular clusters. We investigate early-time neutron-star mergers as the mechanism for this enrichment. Through both numerical modeling and analytical arguments, we show that neutron-star mergers cannot be induced through dynamical interactions early in the history of the cluster, even when the most liberal assumptions about neutron-star segregation are assumed. Therefore, if neutron-star mergers are the primary mechanism for r-process dispersion in globular clusters, they likely result from the evolution of isolated, primordial binaries in the clusters. Through population modeling, we find that moderate fractions of GCs with enrichment are only possible when a significant number of double neutron-star progenitors proceed through Case BB mass transfer --- under various assumptions for the initial properties of globular clusters, a neutron-star merger with the potential for enrichment will occur in ~15-60% (~30-90%) of globular clusters if this mass transfer proceeds stably (unstably). The strong anti-correlation between the pre-supernova orbital separation and post-supernova systemic velocity due to mass loss in the supernova leads to efficient ejection of most enrichment candidates from their host clusters. Thus, most enrichment events occur shortly after the double neutron stars are born. This requires star-forming gas that can absorb the r-process ejecta to be present in the globular cluster 30-50 Myr after the initial burst of star formation. If scenarios for redistributing gas in globular clusters cannot act on these timescales, the number of neutron-star merger enrichment candidates drops severely, and it is likely that another mechanism, such as r-process enrichment from collapsars, is at play.
Comparing observational abundance features with nucleosynthesis predictions of stellar evolution or explosion simulations can scrutinize two aspects: (a) the conditions in the astrophysical production site and (b) the quality of the nuclear physics input utilized. We test the abundance features of r-process nucleosynthesis calculations for the dynamical ejecta of neutron star merger simulations based on three different nuclear mass models: The Finite Range Droplet Model (FRDM), the (quenched version of the) Extended Thomas Fermi Model with Strutinsky Integral (ETFSI-Q), and the Hartree-Fock-Bogoliubov (HFB) mass model. We make use of corresponding fission barrier heights and compare the impact of four different fission fragment distribution models on the final r-process abundance distribution. In particular, we explore the abundance distribution in the second r-process peak and the rare-earth sub-peak as a function of mass models and fission fragment distributions, as well as the origin of a shift in the third r-process peak position. The latter has been noticed in a number of merger nucleosynthesis predictions. We show that the shift occurs during the r-process freeze-out when neutron captures and {beta}-decays compete and an (n,{gamma})-({gamma},n) equilibrium is not maintained anymore. During this phase neutrons originate mainly from fission of material above A = 240. We also investigate the role of {beta}-decay half-lives from recent theoretical advances, which lead either to a smaller amount of fissioning nuclei during freeze-out or a faster (and thus earlier) release of fission neutrons, which can (partially) prevent this shift and has an impact on the second and rare-earth peak as well.
We quantify the stellar abundances of neutron-rich r-process nuclei in cosmological zoom-in simulations of a Milky Way-mass galaxy from the Feedback In Realistic Environments project. The galaxy is enriched with r-process elements by binary neutron star (NS) mergers and with iron and other metals by supernovae. These calculations include key hydrodynamic mixing processes not present in standard semi-analytic chemical evolution models, such as galactic winds and hydrodynamic flows associated with structure formation. We explore a range of models for the rate and delay time of NS mergers, intended to roughly bracket the wide range of models consistent with current observational constraints. We show that NS mergers can produce [r-process/Fe] abundance ratios and scatter that appear reasonably consistent with observational constraints. At low metallicity, [Fe/H]<-2, we predict there is a wide range of stellar r-process abundance ratios, with both supersolar and subsolar abundances. Low-metallicity stars or stars that are outliers in their r-process abundance ratios are, on average, formed at high redshift and located at large galactocentric radius. Because NS mergers are rare, our results are not fully converged with respect to resolution, particularly at low metallicity. However, the uncertain rate and delay time distribution of NS mergers introduces an uncertainty in the r-process abundances comparable to that due to finite numerical resolution. Overall, our results are consistent with NS mergers being the source of most of the r-process nuclei in the Universe.
We have performed r-process calculations for matter ejected dynamically in neutron star mergers based on a complete set of trajectories from a three-dimensional relativistic smoothed particle hydrodynamic simulation. Our calculations consider an extended nuclear network, including spontaneous, $beta$- and neutron-induced fission and adopting fission yield distributions from the ABLA code. We have studied the sensitivity of the r-process abundances to nuclear masses by using different models. Most of the trajectories, corresponding to 90% of the ejected mass, follow a relatively slow expansion allowing for all neutrons to be captured. The resulting abundances are very similar to each other and reproduce the general features of the observed r-process abundance (the second and third peaks, the rare-earth peak and the lead peak) for all mass models as they are mainly determined by the fission yields. We find distinct differences in the abundance yields at and just above the third peak, which can be traced back to different predictions of neutron separation energies for r-process nuclei around neutron number $N=130$. The remaining trajectories, which contribute 10% by mass to the total integrated abundances, follow such a fast expansion that the r process does not use all the neutrons. This also leads to a larger variation of abundances among trajectories as fission does not dominate the r-process dynamics. The total integrated abundances are dominated by contributions from the slow abundances and hence reproduce the general features of the observed r-process abundances. We find that at timescales of weeks relevant for kilonova light curve calculations, the abundance of actinides is larger than the one of lanthanides. Hence actinides can be even more important than lanthanides to determine the photon opacities under kilonova conditions. (Abridged)
Material ejected during (or immediately following) the merger of two neutron stars may assemble into heavy elements by the r-process. The subsequent radioactive decay of the nuclei can power electromagnetic emission similar to, but significantly dimmer than, an ordinary supernova. Identifying such events is an important goal of future transient surveys, offering new perspectives on the origin of r-process nuclei and the astrophysical sources of gravitational waves. Predictions of the transient light curves and spectra, however, have suffered from the uncertain optical properties of heavy ions. Here we consider the opacity of expanding r-process material and argue that it is dominated by line transitions from those ions with the most complex valence electron structure, namely the lanthanides. For a few representative ions, we run atomic structure models to calculate radiative data for tens of millions of lines. We find that the resulting r-process opacities are orders of magnitude larger than that of ordinary (e.g., iron-rich) supernova ejecta. Radiative transport calculations using these new opacities indicate that the transient emission should be dimmer and redder than previously thought. The spectra appear pseudo-blackbody, with broad absorption features, and peak in the infrared (~1 micron). We discuss uncertainties in the opacities and attempt to quantify their impact on the spectral predictions. The results have important implications for observational strategies to find and study the radioactively powered electromagnetic counterparts to compact object mergers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا