Do you want to publish a course? Click here

Learning Realistic Patterns from Unrealistic Stimuli: Generalization and Data Anonymization

119   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Good training data is a prerequisite to develop useful ML applications. However, in many domains existing data sets cannot be shared due to privacy regulations (e.g., from medical studies). This work investigates a simple yet unconventional approach for anonymized data synthesis to enable third parties to benefit from such private data. We explore the feasibility of learning implicitly from unrealistic, task-relevant stimuli, which are synthesized by exciting the neurons of a trained deep neural network (DNN). As such, neuronal excitation serves as a pseudo-generative model. The stimuli data is used to train new classification models. Furthermore, we extend this framework to inhibit representations that are associated with specific individuals. We use sleep monitoring data from both an open and a large closed clinical study and evaluate whether (1) end-users can create and successfully use customized classification models for sleep apnea detection, and (2) the identity of participants in the study is protected. Extensive comparative empirical investigation shows that different algorithms trained on the stimuli are able generalize successfully on the same task as the original model. However, architectural and algorithmic similarity between new and original models play an important role in performance. For similar architectures, the performance is close to that of using the true data (e.g., Accuracy difference of 0.56%, Kappa coefficient difference of 0.03-0.04). Further experiments show that the stimuli can to a large extent successfully anonymize participants of the clinical studies.

rate research

Read More

Motion sensors such as accelerometers and gyroscopes measure the instant acceleration and rotation of a device, in three dimensions. Raw data streams from motion sensors embedded in portable and wearable devices may reveal private information about users without their awareness. For example, motion data might disclose the weight or gender of a user, or enable their re-identification. To address this problem, we propose an on-device transformation of sensor data to be shared for specific applications, such as monitoring selected daily activities, without revealing information that enables user identification. We formulate the anonymization problem using an information-theoretic approach and propose a new multi-objective loss function for training deep autoencoders. This loss function helps minimizing user-identity information as well as data distortion to preserve the application-specific utility. The training process regulates the encoder to disregard user-identifiable patterns and tunes the decoder to shape the output independently of users in the training set. The trained autoencoder can be deployed on a mobile or wearable device to anonymize sensor data even for users who are not included in the training dataset. Data from 24 users transformed by the proposed anonymizing autoencoder lead to a promising trade-off between utility and privacy, with an accuracy for activity recognition above 92% and an accuracy for user identification below 7%.
State-of-the-art machine learning methods exhibit limited compositional generalization. At the same time, there is a lack of realistic benchmarks that comprehensively measure this ability, which makes it challenging to find and evaluate improvements. We introduce a novel method to systematically construct such benchmarks by maximizing compound divergence while guaranteeing a small atom divergence between train and test sets, and we quantitatively compare this method to other approaches for creating compositional generalization benchmarks. We present a large and realistic natural language question answering dataset that is constructed according to this method, and we use it to analyze the compositional generalization ability of three machine learning architectures. We find that they fail to generalize compositionally and that there is a surprisingly strong negative correlation between compound divergence and accuracy. We also demonstrate how our method can be used to create new compositionality benchmarks on top of the existing SCAN dataset, which confirms these findings.
With the widespread use of machine learning for classification, it becomes increasingly important to be able to use weaker kinds of supervision for tasks in which it is hard to obtain standard labeled data. One such kind of supervision is provided pairwise---in the form of Similar (S) pairs (if two examples belong to the same class) and Dissimilar (D) pairs (if two examples belong to different classes). This kind of supervision is realistic in privacy-sensitive domains. Although this problem has been looked at recently, it is unclear how to learn from such supervision under label noise, which is very common when the supervision is crowd-sourced. In this paper, we close this gap and demonstrate how to learn a classifier from noisy S and D labeled data. We perform a detailed investigation of this problem under two realistic noise models and propose two algorithms to learn from noisy S-D data. We also show important connections between learning from such pairwise supervision data and learning from ordinary class-labeled data. Finally, we perform experiments on synthetic and real world datasets and show our noise-informed algorithms outperform noise-blind baselines in learning from noisy pairwise data.
The explosion in workload complexity and the recent slow-down in Moores law scaling call for new approaches towards efficient computing. Researchers are now beginning to use recent advances in machine learning in software optimizations, augmenting or replacing traditional heuristics and data structures. However, the space of machine learning for computer hardware architecture is only lightly explored. In this paper, we demonstrate the potential of deep learning to address the von Neumann bottleneck of memory performance. We focus on the critical problem of learning memory access patterns, with the goal of constructing accurate and efficient memory prefetchers. We relate contemporary prefetching strategies to n-gram models in natural language processing, and show how recurrent neural networks can serve as a drop-in replacement. On a suite of challenging benchmark datasets, we find that neural networks consistently demonstrate superior performance in terms of precision and recall. This work represents the first step towards practical neural-network based prefetching, and opens a wide range of exciting directions for machine learning in computer architecture research.
In this paper, we investigate the problem of overfitting in deep reinforcement learning. Among the most common benchmarks in RL, it is customary to use the same environments for both training and testing. This practice offers relatively little insight into an agents ability to generalize. We address this issue by using procedurally generated environments to construct distinct training and test sets. Most notably, we introduce a new environment called CoinRun, designed as a benchmark for generalization in RL. Using CoinRun, we find that agents overfit to surprisingly large training sets. We then show that deeper convolutional architectures improve generalization, as do methods traditionally found in supervised learning, including L2 regularization, dropout, data augmentation and batch normalization.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا