Do you want to publish a course? Click here

Two-qubit entanglement generation through non-Hermitian Hamiltonians induced by repeated measurements on an ancilla

82   0   0.0 ( 0 )
 Added by Roberto Grimaudo
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In contrast to classical systems, actual implementation of non-Hermitian Hamiltonian dynamics for quantum systems is a challenge because the processes of energy gain and dissipation are based on the underlying Hermitian system-environment dynamics that is trace preserving. Recently, a scheme for engineering non-Hermitian Hamiltonians as a result of repetitive measurements on an anicillary qubit has been proposed. The induced conditional dynamics of the main system is described by the effective non-Hermitian Hamiltonian arisng from the procedure. In this paper we demonstrate the effectiveness of such a protocol by applying it to physically relevant multi-spin models, showing that the effective non-Hermitian Hamiltonian drives the system to a maximally entangled stationary state. In addition, we report a new recipe to construct a physical scenario where the quantum dynamics of a physical system represented by a given non-Hermitian Hamiltonian model may be simulated. The physical implications and the broad scope potential applications of such a scheme are highlighted.



rate research

Read More

We consider two qubits interacting with a common bosonic bath, but not directly between themselves. We derive the (bipartite) entanglement generation conditions for Gaussian non-Markovian dynamical maps and show that they are similar as in the Markovian regime; however, they depend on different physical coefficients and hold on different time scales. Indeed, for small times, in the non-Markovian regime entanglement is possibly generated on a shorter time scale ($propto t^2$) than in the Markovian one ($propto t$). Moreover, although the singular coupling limit of non-Markovian dynamics yields Markovian ones, we show that the same limit does not lead from non-Markovian entanglement generation conditions to Markovian ones. Also, the entanglement generation conditions do not depend on the initial time for non-Markovian open dynamics resulting from couplings to bosonic Gaussian baths, while they may depend on time for open dynamics originated by couplings to classical, stochastic Gaussian environments.
A recently proposed purification method, in which the Zeno-like measurements of a subsystem can bring about a distillation of another subsystem in interaction with the former, is utilized to yield entangled states between distant systems. It is shown that the measurements of a two-level system locally interacting with other two spatially separated not coupled subsystems, can distill entangled states from the latter irrespectively of the initial states of the two subsystems.
We study the quantum entropy of systems that are described by general non-Hermitian Hamiltonians, including those which can model the effects of sinks or sources. We generalize the von Neumann entropy to the non- Hermitian case and find that one needs both the normalized and non-normalized density operators in order to properly describe irreversible processes. It turns out that such a generalization monitors the onset of disorder in quantum dissipative systems. We give arguments for why one can consider the generalized entropy as the informational entropy describing the flow of information between the system and the bath. We illustrate the theory by explicitly studying few simple models, including tunneling systems with two energy levels and non-Hermitian detuning.
We report on the realization and application of non-destructive three-qubit parity measurements on nuclear spin qubits in diamond. We use high-fidelity quantum logic to map the parity of the joint state of three nuclear spin qubits onto an electronic spin qubit that acts as an ancilla, followed by single-shot non-destructive readout of the ancilla combined with an electron spin echo to ensure outcome-independent evolution of the nuclear spins. Through the sequential application of three such parity measurements, we demonstrate the generation of genuine multipartite entangled states out of the maximally mixed state. Furthermore, we implement a single-shot version of the GHZ experiment that can generate a quantum versus classical contradiction in each run. Finally, we test a state-independent non-contextuality inequality in eight dimensions. The techniques and insights developed here are relevant for fundamental tests as well as for quantum information protocols such as quantum error correction.
We consider the description of open quantum systems with probability sinks (or sources) in terms of general non-Hermitian Hamiltonians.~Within such a framework, we study novel possible definitions of the quantum linear entropy as an indicator of the flow of information during the dynamics. Such linear entropy functionals are necessary in the case of a partially Wigner-transformed non-Hermitian Hamiltonian (which is typically useful within a mixed quantum-classical representation). Both the case of a system represented by a pure non-Hermitian Hamiltonian as well as that of the case of non-Hermitian dynamics in a classical bath are explicitly considered.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا