Do you want to publish a course? Click here

A Hybrid Simulation-based Duopoly Game Framework for Analysis of Supply Chain and Marketing Activities

119   0   0.0 ( 0 )
 Added by Dong Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A hybrid simulation-based framework involving system dynamics and agent-based simulation is proposed to address duopoly game considering multiple strategic decision variables and rich payoff, which cannot be addressed by traditional approaches involving closed-form equations. While system dynamics models are used to represent integrated production, logistics, and pricing determination activities of duopoly companies, agent-based simulation is used to mimic enhanced consumer purchasing behavior considering advertisement, promotion effect, and acquaintance recommendation in the consumer social network. The payoff function of the duopoly companies is assumed to be the net profit based on the total revenue and various cost items such as raw material, production, transportation, inventory and backorder. A unique procedure is proposed to solve and analyze the proposed simulation-based game, where the procedural components include strategy refinement, data sampling, gaming solving, and performance evaluation. First, design of experiment and estimated conformational value of information techniques are employed for strategy refinement and data sampling, respectively. Game solving then focuses on pure strategy equilibriums, and performance evaluation addresses game stability, equilibrium strictness, and robustness. A hypothetical case scenario involving soft-drink duopoly on Coke and Pepsi is considered to illustrate and demonstrate the proposed approach. Final results include P-values of statistical tests, confidence intervals, and simulation steady state analysis for different pure equilibriums.



rate research

Read More

The operation of future intelligent transportation systems (ITSs), communications infrastructure (CI), and power grids (PGs) will be highly interdependent. In particular, autonomous connected vehicles require CI resources to operate, and, thus, communication failures can result in non-optimality in the ITS flow in terms of traffic jams and fuel consumption. Similarly, CI components, e.g., base stations (BSs) can be impacted by failures in the electric grid that is powering them. Thus, malicious attacks on the PG can lead to failures in both the CI and the ITSs. To this end, in this paper, the security of an ITS against indirect attacks carried out through the PG is studied in an interdependent PG-CI-ITS scenario. To defend against such attacks, the administrator of the interdependent critical infrastructure can allocate backup power sources (BPSs) at every BS to compensate for the power loss caused by the attacker. However, due to budget limitations, the administrator must consider the importance of each BS in light of the PG risk of failure, while allocating the BPSs. In this regard, a rigorous analytical framework is proposed to model the interdependencies between the ITS, CI, and PG. Next, a one-to-one relationship between the PG components and ITS streets is derived in order to capture the effect of the PG components failure on the optimality of the traffic flow in the streets. Moreover, the problem of BPS allocation is formulated using a Stackelberg game framework and the Stackelberg equilibrium (SE) of the game is characterized. Simulation results show that the derived SE outperforms any other BPS allocation strategy and can be scalable in linear time with respect to the size of the interdependent infrastructure.
In this paper, we address the much-anticipated deployment of connected and automated vehicles (CAVs) in society by modeling and analyzing the social-mobility dilemma in a game-theoretic approach. We formulate this dilemma as a normal-form game of players making a binary decision: whether to travel with a CAV (CAV travel) or not (non-CAV travel) and by constructing an intuitive payoff function inspired by the socially beneficial outcomes of a mobility system consisting of CAVs. We show that the game is equivalent to the Prisoners dilemma, which implies that the rational collective decision is the opposite of the socially optimum. We present two different solutions to tackle this phenomenon: one with a preference structure and the other with institutional arrangements. In the first approach, we implement a social mechanism that incentivizes players to non-CAV travel and derive a lower bound on the players that ensures an equilibrium of non-CAV travel. In the second approach, we investigate the possibility of players bargaining to create an institution that enforces non-CAV travel and show that as the number of players increases, the incentive ratio of non-CAV travel over CAV travel tends to zero. We conclude by showcasing the last result with a numerical study.
Supply chains are the backbone of the global economy. Disruptions to them can be costly. Centrally managed supply chains invest in ensuring their resilience. Decentralized supply chains, however, must rely upon the self-interest of their individual components to maintain the resilience of the entire chain. We examine the incentives that independent self-interested agents have in forming a resilient supply chain network in the face of production disruptions and competition. In our model, competing suppliers are subject to yield uncertainty (they deliver less than ordered) and congestion (lead time uncertainty or, soft supply caps). Competing retailers must decide which suppliers to link to based on both price and reliability. In the presence of yield uncertainty only, the resulting supply chain networks are sparse. Retailers concentrate their links on a single supplier, counter to the idea that they should mitigate yield uncertainty by diversifying their supply base. This happens because retailers benefit from supply variance. It suggests that competition will amplify output uncertainty. When congestion is included as well, the resulting networks are denser and resemble the bipartite expander graphs that have been proposed in the supply chain literature, thereby, providing the first example of endogenous formation of resilient supply chain networks, without resilience being explicitly encoded in payoffs. Finally, we show that a suppliers investments in improved yield can make it worse off. This happens because high production output saturates the market, which, in turn lowers prices and profits for participants.
The inventories carried in a supply chain as a strategic tool to influence the competing firms are considered to be strategic inventories (SI). We present a two-period game-theoretic supply chain model, in which a singular manufacturer supplies products to a pair of identical Cournot duopolistic retailers. We show that the SI carried by the retailers under dynamic contract is Pareto-dominating for the manufacturer, retailers, consumers, the channel, and the society as well. We also find that retailers SI, however, can be eliminated when the manufacturer commits wholesale contract or inventory holding cost is too high. In comparing the cases with and without downstream competition, we also show that the downstream Cournot duopoly undermines the profits for the retailers, but benefits all others.
Low transaction throughput and poor scalability are significant issues in public blockchain consensus protocols such as Bitcoins. Recent research efforts in this direction have proposed shard-based consensus protocols where the key idea is to split the transactions among multiple committees (or shards), which then process these shards or set of transactions in parallel. Such a parallel processing of disjoint sets of transactions or shards by multiple committees significantly improves the overall scalability and transaction throughout of the system. However, one significant research gap is a lack of understanding of the strategic behavior of rational processors within committees in such shard-based consensus protocols. Such an understanding is critical for designing appropriate incentives that will foster cooperation within committees and prevent free-riding. In this paper, we address this research gap by analyzing the behavior of processors using a game-theoretic model, where each processor aims at maximizing its reward at a minimum cost of participating in the protocol. We first analyze the Nash equilibria in an N-player static game model of the sharding protocol. We show that depending on the reward sharing approach employed, processors can potentially increase their payoff by unilaterally behaving in a defective fashion, thus resulting in a social dilemma. In order to overcome this social dilemma, we propose a novel incentive-compatible reward sharing mechanism to promote cooperation among processors. Our numerical results show that achieving a majority of cooperating processors (required to ensure a healthy state of the blockchain network) is easier to achieve with the proposed incentive-compatible reward sharing mechanism than with other reward sharing mechanisms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا