No Arabic abstract
Facial attribute editing has mainly two objectives: 1) translating image from a source domain to a target one, and 2) only changing the facial regions related to a target attribute and preserving the attribute-excluding details. In this work, we propose a Multi-attention U-Net-based Generative Adversarial Network (MU-GAN). First, we replace a classic convolutional encoder-decoder with a symmetric U-Net-like structure in a generator, and then apply an additive attention mechanism to build attention-based U-Net connections for adaptively transferring encoder representations to complement a decoder with attribute-excluding detail and enhance attribute editing ability. Second, a self-attention mechanism is incorporated into convolutional layers for modeling long-range and multi-level dependencies across image regions. experimental results indicate that our method is capable of balancing attribute editing ability and details preservation ability, and can decouple the correlation among attributes. It outperforms the state-of-the-art methods in terms of attribute manipulation accuracy and image quality.
In this paper, we introduce attribute-aware fashion-editing, a novel task, to the fashion domain. We re-define the overall objectives in AttGAN and propose the Fashion-AttGAN model for this new task. A dataset is constructed for this task with 14,221 and 22 attributes, which has been made publically available. Experimental results show the effectiveness of our Fashion-AttGAN on fashion editing over the original AttGAN.
We present a novel high-fidelity generative adversarial network (GAN) inversion framework that enables attribute editing with image-specific details well-preserved (e.g., background, appearance and illumination). We first formulate GAN inversion as a lossy data compression problem and carefully discuss the Rate-Distortion-Edit trade-off. Due to this trade-off, previous works fail to achieve high-fidelity reconstruction while keeping compelling editing ability with a low bit-rate latent code only. In this work, we propose a distortion consultation approach that employs the distortion map as a reference for reconstruction. In the distortion consultation inversion (DCI), the distortion map is first projected to a high-rate latent map, which then complements the basic low-rate latent code with (lost) details via consultation fusion. To achieve high-fidelity editing, we propose an adaptive distortion alignment (ADA) module with a self-supervised training scheme. Extensive experiments in the face and car domains show a clear improvement in terms of both inversion and editing quality.
Modeling layout is an important first step for graphic design. Recently, methods for generating graphic layouts have progressed, particularly with Generative Adversarial Networks (GANs). However, the problem of specifying the locations and sizes of design elements usually involves constraints with respect to element attributes, such as area, aspect ratio and reading-order. Automating attribute conditional graphic layouts remains a complex and unsolved problem. In this paper, we introduce Attribute-conditioned Layout GAN to incorporate the attributes of design elements for graphic layout generation by forcing both the generator and the discriminator to meet attribute conditions. Due to the complexity of graphic designs, we further propose an element dropout method to make the discriminator look at partial lists of elements and learn their local patterns. In addition, we introduce various loss designs following different design principles for layout optimization. We demonstrate that the proposed method can synthesize graphic layouts conditioned on different element attributes. It can also adjust well-designed layouts to new sizes while retaining elements original reading-orders. The effectiveness of our method is validated through a user study.
We propose a generative framework based on generative adversarial network (GAN) to enhance facial attractiveness while preserving facial identity and high-fidelity. Given a portrait image as input, having applied gradient descent to recover a latent vector that this generative framework can use to synthesize an image resemble to the input image, beauty semantic editing manipulation on the corresponding recovered latent vector based on InterFaceGAN enables this framework to achieve facial image beautification. This paper compared our system with Beholder-GAN and our proposed result-enhanced version of Beholder-GAN. It turns out that our framework obtained state-of-art attractiveness enhancement results. The code is available at https://github.com/zoezhou1999/BeautifyBasedOnGAN.
We present Poly-GAN, a novel conditional GAN architecture that is motivated by Fashion Synthesis, an application where garments are automatically placed on images of human models at an arbitrary pose. Poly-GAN allows conditioning on multiple inputs and is suitable for many tasks, including image alignment, image stitching, and inpainting. Existing methods have a similar pipeline where three different networks are used to first align garments with the human pose, then perform stitching of the aligned garment and finally refine the results. Poly-GAN is the first instance where a common architecture is used to perform all three tasks. Our novel architecture enforces the conditions at all layers of the encoder and utilizes skip connections from the coarse layers of the encoder to the respective layers of the decoder. Poly-GAN is able to perform a spatial transformation of the garment based on the RGB skeleton of the model at an arbitrary pose. Additionally, Poly-GAN can perform image stitching, regardless of the garment orientation, and inpainting on the garment mask when it contains irregular holes. Our system achieves state-of-the-art quantitative results on Structural Similarity Index metric and Inception Score metric using the DeepFashion dataset.