Do you want to publish a course? Click here

Enhanced Harmonic Generation in Gases Using an All-Dielectric Metasurface

168   0   0.0 ( 0 )
 Added by Jared Ginsberg
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Strong field-confinement, long-lifetime resonances, and slow-light effects suggest that meta surfaces are a promising tool for nonlinear optical applications. These nanostructured devices have been utilized for relatively high efficiency solid-state high-harmonic generation platforms, four-wave mixing, and Raman scattering experiments, among others. Here we report the first all-dielectric metasurface to enhance harmonic generation from a surrounding gas, achieving as much as a factor of 45 increase in the overall yield for Argon atoms. When compared to metal nanostructures, dielectrics are more robust against damage for high power applications such as those using atomic gases. We employ dimerized high-contrast gratings fabricated in silicon-on-insulator that support bound states in the continuum, a resonance feature accessible in broken-symmetry planar devices. Our 1D gratings maintain large mode volumes, overcoming one of the more severe limitations of earlier device designs and greatly contributing to enhanced third- and fifth- harmonic generation. The interaction lengths that can be achieved are also significantly greater than the 10s of nm to which earlier solid-state designs were restricted. We perform finite-difference time-domain simulations to fully characterize the wavelength, linewidth, mode profile, and polarization dependence of the resonances. Our experiments confirm these predictions and are consistent with other nonlinear optical properties. The tunable wavelength dependence and quality-factor control we demonstrate in these devices make them an attractive tool for the next generation of high-harmonic sources, which are anticipated to be pumped at longer wavelengths and with lower peak power, higher repetition rate lasers.



rate research

Read More

The recent observation of high-harmonic generation from solids creates a new possibility for engineering fundamental strong-field processes by patterning the solid target with subwavelength nanostructures. All-dielectric metasurfaces exhibit high damage thresholds and strong enhancement of the driving field, making them attractive platforms to control high-harmonics and other high-field processes at nanoscales. Here we report enhanced non-perturbative high-harmonic emission from a Si metasurface that possesses a sharp Fano resonance resulting from a classical analogue of electromagnetically induced transparency. Harmonic emission is enhanced by more than two orders of magnitude compared to unpatterned samples. The enhanced high harmonics are highly anisotropic with excitation polarization and are selective to excitation wavelength due to its resonant feature. By combining nanofabrication technology and ultrafast strong-field physics, our work paves the way for designing new compact ultrafast photonic devices that operate under high intensities and short wavelengths.
Resonant metasurfaces have received extensive attention due to their sharp spectral feature and extraordinary field enhancement. In this work, by breaking the in-plane symmetry of silicon nanopillars, we achieve a sharp Fano resonance. The far-field radiation and near-field distribution of metasurfaces are calculated and analyzed to further uncover the resonant performance of metasurfaces. Moreover, the theoretical derivation and simulation exhibit an inverse quadratic dependence of Q-factors on asymmetry parameters, revealing that the resonance is governed by the symmetry-protected bound states in the continuum. Finally we experimentally demonstrate the sharp resonance, and employ it to effciently boost the third-harmonic generation. This enhancement can be attributed to the strong optical intensity enhancement inside the metasurface.
The enhancement and control of non-linear phenomena at a nanometer scale has a wide range of applications in science and in industry. Among these phenomena, high-harmonic generation in solids is a recent focus of research to realize next generation petahertz optoelectronic devices or compact all solid state EUV sources. Here, we report on the realization of the first nanoscale high harmonic source. The strong field regime is reached by confining the electric field from a few nanojoules femtosecond laser in a single 3D semiconductor waveguide. We reveal a strong competition between enhancement of coherent harmonics and incoherent fluorescence favored by excitonic processes. However, far from the band edge, clear enhancement of the harmonic emission is reported with a robust sustainability offering a compact nanosource for applications. We illustrate the potential of our harmonic nano-device by performing a coherent diffractive imaging experiment. Ultra-compact UV/X-ray nanoprobes are foreseen to have other potential applications such as petahertz electronics, nano-tomography or nano-medicine.
Tunable coherent light sources operating in the vacuum ultraviolet (VUV) region in 100-200-nm (6-12 eV) wavelength range have important spectroscopic applications in many research fields, including time-resolved angle-resolved photoemission spectroscopy (ARPES). Recent advances in laser technology have enabled the upconversion of visible femtosecond lasers to the vacuum and extreme ultraviolet regions. However, the complexity of their experimental setups and the scarcity of bulk nonlinear crystals for VUV generation have hampered its widespread use. Here, we propose the use of a free-standing dielectric nanomembranes as a simple and practical method for tunable VUV generation. We demonstrate that third harmonic VUV light is generated with sufficient intensity for spectroscopic applications from commercially available SiO2 nanomemebranes of submicron thicknesses under excitation with visible femtosecond laser pulses. The submicron thickness of the nanomembranes is optimal for maximize the VUV generation efficiency and prevents self-phase modulation and spectral broadening of the fundamental beam. The observed VUV photons are up to 10^7 photons per pulse at 157 nm with 1-kHz repetition rate, corresponding to a conversion efficiency of 10^-6. Moreover, the central VUV wavelength can be tuned in 146-190-nm wavelength range by changing the fundamental wavelength. We also explore material and thickness dependence with experiments and calculations. The presented results suggest that dielectric nanomembranes can be used as a practical nonlinear media for VUV spectroscopic applications.
Nonlinear topological photonics, which explores topics common to the fields of topological phases and nonlinear optics, is expected to open up a new paradigm in topological photonics. Here, we demonstrate second-harmonic generation (SHG) via nonlinear interaction of double topological valley-Hall kink modes in all-dielectric photonic crystals (PhCs). We first show that two topological frequency bandgaps can be created around a pair of frequencies, $omega_0$ and $2omega_0$, by gapping out the corresponding Dirac points in two-dimensional honeycomb PhCs. Valley-Hall kink modes along a kink-type domain wall interface between two PhCs placed together in a mirror-symmetric manner are generated within the two frequency bandgaps. Importantly, through full-wave simulations and mode dispersion analysis, we demonstrate that tunable, bi-directional phase-matched SHG via nonlinear interaction of the valley-Hall kink modes inside the two bandgaps can be achieved. In particular, by using Stokes parameters associated to the magnetic part of the valley-Hall kink modes, we introduce a new concept, SHG directional dichroism, which is employed to characterize optical probes for sensing chiral molecules. Our work opens up new avenues towards topologically protected nonlinear frequency mixing and active photonic devices implemented in all-dielectric material platforms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا