Do you want to publish a course? Click here

DQSEGDB: A time-interval database for storing gravitational wave observatory metadata

387   0   0.0 ( 0 )
 Added by Ryan Fisher
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Data Quality Segment Database (DQSEGDB) software is a database service, backend API, frontend graphical web interface, and client package used by the Laser Interferometer Gravitational-Wave Observatory (LIGO), Virgo, GEO600 and the Kamioka Gravitational wave detector for storing and accessing metadata describing the status of their detectors. The DQSEGDB has been used in the analysis of all published detections of gravitational waves in the advanced detector era. The DQSEGDB currently stores roughly 600 million metadata entries and responds to roughly 600,000 queries per day with an average response time of 0.223 ms.



rate research

Read More

195 - H. D. Tran 2014
A collaboration between the W. M. Keck Observatory (WMKO) in Hawaii and the NASA Exoplanet Science Institute (NExScI) in California, the Keck Observatory Archive (KOA) was commissioned in 2004 to archive observing data from WMKO, which operates two classically scheduled 10 m ground-based telescopes. The observing data from Keck is not suitable for direct ingestion into the archive since the metadata contained in the original FITS headers lack the information necessary for proper archiving. Coupled with different standards among instrument builders and the heterogeneous nature of the data inherent in classical observing, in which observers have complete control of the instruments and their observations, the data pose a number of technical challenges for KOA. We describe the methodologies and tools that we have developed to successfully address these difficulties, adding content to the FITS headers and retrofitting the metadata in order to support archiving Keck data, especially those obtained before the archive was designed. With the expertise gained from having successfully archived observations taken with all eight currently active instruments at WMKO, we have developed lessons learned from handling this complex array of heterogeneous metadata that help ensure a smooth ingestion of data not only for current but also future instruments, as well as a better experience for the archive user.
55 - J.C. Loach , J. Cooley , G.A. Cox 2016
Searches for rare nuclear processes, such as neutrinoless double beta-decay and the interactions of WIMP dark matter, are motivating experiments with ever-decreasing levels of radioactive backgrounds. These background reductions are achieved using various techniques, but amongst the most important is minimizing radioactive contamination in the materials from which the experiment is constructed. To this end there have been decades of advances in material sourcing, manufacture and certification, during which researchers have accumulated many thousands of measurements of material radiopurity. Some of these assays are described in publications, others are in databases, but many are still communicated informally. Until this work, there has been no standard format for encoding assay results and no effective, central location for storing them. The aim of this work is to address these long-standing problems by creating a concise and flexible material assay data format and powerful software application to manipulate it. A public installation of this software, available at http://www.radiopurity.org, is the largest database of assay results ever compiled and is intended as a long-term repository for the communitys data.
We present a calibration component for the Murchison Widefield Array All-Sky Virtual Observatory (MWA ASVO) utilising a newly developed PostgreSQL database of calibration solutions. Since its inauguration in 2013, the MWA has recorded over thirty-four petabytes of data archived at the Pawsey Supercomputing Centre. According to the MWA Data Access policy, data become publicly available eighteen months after collection. Therefore, most of the archival data are now available to the public. Access to public data was provided in 2017 via the MWA ASVO interface, which allowed researchers worldwide to download MWA uncalibrated data in standard radio astronomy data formats (CASA measurement sets or UV FITS files). The addition of the MWA ASVO calibration feature opens a new, powerful avenue for researchers without a detailed knowledge of the MWA telescope and data processing to download calibrated visibility data and create images using standard radio-astronomy software packages. In order to populate the database with calibration solutions from the last six years we developed fully automated pipelines. A near-real-time pipeline has been used to process new calibration observations as soon as they are collected and upload calibration solutions to the database, which enables monitoring of the interferometric performance of the telescope. Based on this database we present an analysis of the stability of the MWA calibration solutions over long time intervals.
Advanced laser interferometer gravitational-wave detectors use high laser power to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses, causing aberrations in the main laser beam that must be minimized by the actuation of ring heaters, which are additional heater elements that are aimed to reduce the temperature gradients in the mirrors. In this article we derive the first, to the best of our knowledge, analytical model of the temperature field generated by an ideal ring heater. We express the resulting optical aberration contribution to the main laser beam in this axisymmetric case. Used in conjunction with wavefront measurements, our model provides a more complete understanding of the thermal state of the cavity mirrors and will allow a more efficient use of the ring heaters in the Advanced Laser Interferometer Gravitational-wave Observatory.
KAGRA is a second-generation interferometric gravitational-wave detector with 3-km arms constructed at Kamioka, Gifu in Japan. It is now in its final installation phase, which we call bKAGRA (baseline KAGRA), with scientific observations expected to begin in late 2019. One of the advantages of KAGRA is its underground location of at least 200 m below the ground surface, which brings small seismic motion at low frequencies and high stability of the detector. Another advantage is that it cools down the sapphire test mass mirrors to cryogenic temperatures to reduce thermal noise. In April-May 2018, we have operated a 3-km Michelson interferometer with a cryogenic test mass for 10 days, which was the first time that km-scale interferometer was operated at cryogenic temperatures. In this article, we report the results of this bKAGRA Phase 1 operation. We have demonstrated the feasibility of 3-km interferometer alignment and control with cryogenic mirrors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا