Do you want to publish a course? Click here

Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory

78   0   0.0 ( 0 )
 Added by Joshua Ramette
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Advanced laser interferometer gravitational-wave detectors use high laser power to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses, causing aberrations in the main laser beam that must be minimized by the actuation of ring heaters, which are additional heater elements that are aimed to reduce the temperature gradients in the mirrors. In this article we derive the first, to the best of our knowledge, analytical model of the temperature field generated by an ideal ring heater. We express the resulting optical aberration contribution to the main laser beam in this axisymmetric case. Used in conjunction with wavefront measurements, our model provides a more complete understanding of the thermal state of the cavity mirrors and will allow a more efficient use of the ring heaters in the Advanced Laser Interferometer Gravitational-wave Observatory.



rate research

Read More

Knowledge of the intensity and phase profiles of spectral components in a coherent optical field is critical for a wide range of high-precision optical applications. One of these is interferometric gravitational wave detectors, which rely on such fields for precise control of the experiment. Here we demonstrate a new device, an textit{optical lock-in camera}, and highlight how they can be used within a gravitational wave interferometer to directly image fields at a higher spatial and temporal resolution than previously possible. This improvement is achieved using a Pockels cell as a fast optical switch which transforms each pixel on a sCMOS array into an optical lock-in amplifier. We demonstrate that the optical lock-in camera can image fields with 2~Mpx resolution at 10~Hz with a sensitivity of -62~dBc when averaged over 2s.
The goal of the Laser Interferometric Gravitational-Wave Observatory (LIGO) is to detect and study gravitational waves of astrophysical origin. Direct detection of gravitational waves holds the promise of testing general relativity in the strong-field regime, of providing a new probe of exotic objects such as black hole and neutron stars, and of uncovering unanticipated new astrophysics. LIGO, a joint Caltech-MIT project supported by the National Science Foundation, operates three multi-kilometer interferometers at two widely separated sites in the United States. These detectors are the result of decades of worldwide technology development, design, construction, and commissioning. They are now operating at their design sensitivity, and are sensitive to gravitational wave strains smaller than 1 part in 1E21. With this unprecedented sensitivity, the data are being analyzed to detect or place limits on gravitational waves from a variety of potential astrophysical sources.
The astrophysical reach of current and future ground-based gravitational-wave detectors is mostly limited by quantum noise, induced by vacuum fluctuations entering the detector output port. The replacement of this ordinary vacuum field with a squeezed vacuum field has proven to be an effective strategy to mitigate such quantum noise and it is currently used in advanced detectors. However, current squeezing cannot improve the noise across the whole spectrum because of the Heisenberg uncertainty principle: when shot noise at high frequencies is reduced, radiation pressure at low frequencies is increased. A broadband quantum noise reduction is possible by using a more complex squeezing source, obtained by reflecting the squeezed vacuum off a Fabry-Perot cavity, known as filter cavity. Here we report the first demonstration of a frequency-dependent squeezed vacuum source able to reduce quantum noise of advanced gravitational-wave detectors in their whole observation bandwidth. The experiment uses a suspended 300-m-long filter cavity, similar to the one planned for KAGRA, Advanced Virgo and Advanced LIGO, and capable of inducing a rotation of the squeezing ellipse below 100 Hz.
The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than $10^{-23}/sqrt{text{Hz}}$ was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the observable volume in the universe. The average distance at which coalescing binary black hole systems with individual masses of 30 $M_odot$ could be detected was 1.3 Gpc. Similarly, the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of Universe increased respectively by a factor 69 and 43. These improvements allowed Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914.
The thermal fluctuation of mirror surfaces is the fundamental limitation for interferometric gravitational wave (GW) detectors. Here, we experimentally demonstrate for the first time a reduction in a mirrors thermal fluctuation in a GW detector with sapphire mirrors from the Cryogenic Laser Interferometer Observatory at 17,K and 18,K. The detector sensitivity, which was limited by the mirrors thermal fluctuation at room temperature, was improved in the frequency range of 90,Hz to 240,Hz by cooling the mirrors. The improved sensitivity reached a maximum of $2.2 times 10^{-19},textrm{m}/sqrt{textrm{Hz}}$ at 165,Hz.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا