Do you want to publish a course? Click here

Power-type derivatives for rough volatility with jumps

99   0   0.0 ( 0 )
 Added by Weixuan Xia
 Publication date 2020
  fields Financial
and research's language is English
 Authors Weixuan Xia




Ask ChatGPT about the research

In this paper we propose an efficient pricing-hedging framework for volatility derivatives which simultaneously takes into account path roughness and jumps. Instead of dealing with log-volatility, we directly model the instantaneous variance of a risky asset in terms of a fractional Ornstein-Uhlenbeck process driven by an infinite-activity L{e}vy subordinator, which is shown to exhibit roughness under suitable conditions and also eludes the need for an independent Brownian component. This structure renders the characteristic function of forward variance obtainable at least in semi-closed form, subject to a generic integrable kernel. To analyze financial derivatives, primarily swaps and European-style options, on average forward volatility, we introduce a general class of power-type derivatives on the average forward variance, which also provide a way of adjusting the option investors risk exposure. Pricing formulae are based on numerical inverse Fourier transform and, as illustrated by an empirical study on VIX options, permit stable and efficient model calibration once specified.



rate research

Read More

In this paper, a pricing formula for volatility swaps is delivered when the underlying asset follows the stochastic volatility model with jumps and stochastic intensity. By using Feynman-Kac theorem, a partial integral differential equation is obtained to derive the joint moment generating function of the previous model. Moreover, discrete and continuous sampled volatility swap pricing formulas are given by employing transform techniques and the relationship between two pricing formulas is discussed. Finally, some numerical simulations are reported to support the results presented in this paper.
A new paradigm recently emerged in financial modelling: rough (stochastic) volatility, first observed by Gatheral et al. in high-frequency data, subsequently derived within market microstructure models, also turned out to capture parsimoniously key stylized facts of the entire implied volatility surface, including extreme skews that were thought to be outside the scope of stochastic volatility. On the mathematical side, Markovianity and, partially, semi-martingality are lost. In this paper we show that Hairers regularity structures, a major extension of rough path theory, which caused a revolution in the field of stochastic partial differential equations, also provides a new and powerful tool to analyze rough volatility models.
The research presented in this article provides an alternative option pricing approach for a class of rough fractional stochastic volatility models. These models are increasingly popular between academics and practitioners due to their surprising consistency with financial markets. However, they bring several challenges alongside. Most noticeably, even simple non-linear financial derivatives as vanilla European options are typically priced by means of Monte-Carlo (MC) simulations which are more computationally demanding than similar MC schemes for standard stochastic volatility models. In this paper, we provide a proof of the prediction law for general Gaussian Volterra processes. The prediction law is then utilized to obtain an adapted projection of the future squared volatility -- a cornerstone of the proposed pricing approximation. Firstly, a decomposition formula for European option prices under general Volterra volatility models is introduced. Then we focus on particular models with rough fractional volatility and we derive an explicit semi-closed approximation formula. Numerical properties of the approximation for a popular model -- the rBergomi model -- are studied and we propose a hybrid calibration scheme which combines the approximation formula alongside MC simulations. This scheme can significantly speed up the calibration to financial markets as illustrated on a set of AAPL options.
Sparked by Al`os, Leon, and Vives (2007); Fukasawa (2011, 2017); Gatheral, Jaisson, and Rosenbaum (2018), so-called rough stochastic volatility models such as the rough Bergomi model by Bayer, Friz, and Gatheral (2016) constitute the latest evolution in option price modeling. Unlike standard bivariate diffusion models such as Heston (1993), these non-Markovian models with fractional volatility drivers allow to parsimoniously recover key stylized facts of market implied volatility surfaces such as the exploding power-law behaviour of the at-the-money volatility skew as time to maturity goes to zero. Standard model calibration routines rely on the repetitive evaluation of the map from model parameters to Black-Scholes implied volatility, rendering calibration of many (rough) stochastic volatility models prohibitively expensive since there the map can often only be approximated by costly Monte Carlo (MC) simulations (Bennedsen, Lunde, & Pakkanen, 2017; McCrickerd & Pakkanen, 2018; Bayer et al., 2016; Horvath, Jacquier, & Muguruza, 2017). As a remedy, we propose to combine a standard Levenberg-Marquardt calibration routine with neural network regression, replacing expensive MC simulations with cheap forward runs of a neural network trained to approximate the implied volatility map. Numerical experiments confirm the high accuracy and speed of our approach.
This paper studies pricing derivatives in an age-dependent semi-Markov modulated market. We consider a financial market where the asset price dynamics follow a regime switching geometric Brownian motion model in which the coefficients depend on finitely many age-dependent semi-Markov processes. We further allow the volatility coefficient to depend on time explicitly. Under these market assumptions, we study locally risk minimizing pricing of a class of European options. It is shown that the price function can be obtained by solving a non-local B-S-M type PDE. We establish existence and uniqueness of a classical solution of the Cauchy problem. We also find another characterization of price function via a system of Volterra integral equation of second kind. This alternative representation leads to computationally efficient methods for finding price and hedging. Finally, we analyze the PDE to establish continuous dependence of the solution on the instantaneous transition rates of semi-Markov processes. An explicit expression of quadratic residual risk is also obtained.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا