No Arabic abstract
Quantum field theories in AdS generate conformal correlation functions on the boundary, and in the limit where AdS is nearly flat one should be able to extract an S-matrix from such correlators. We discuss a particularly simple position-space procedure to do so. It features a direct map from boundary positions to (on-shell) momenta and thereby relates cross ratios to Mandelstam invariants. This recipe succeeds in several examples, includes the momentum-conserving delta functions, and can be shown to imply the two proposals in arXiv:1607.06109 based on Mellin space and on the OPE data. Interestingly the procedure does not always work: the Landau singularities of a Feynman diagram are shown to be part of larger regions, to be called `bad regions, where the flat-space limit of the Witten diagram diverges. To capture these divergences we introduce the notion of Landau diagrams in AdS. As in flat space, these describe on-shell particles propagating over large distances in a complexified space, with a form of momentum conservation holding at each bulk vertex. As an application we recover the anomalous threshold of the four-point triangle diagram at the boundary of a bad region.
Using the proposed AdS/CFT correspondence, we calculate the correlators of operators of conformal field theory at the boundary of AdS$_{d+1}$ corresponding to the sine-Gordon model in the bulk.
We calculate all components of thermal R-current correlators from AdS/CFT correspondence for non-zero momentum and energy. In zero momentum limit, we find an analytic expression for the components Gxx(Gyy). The dielectric function of strong coupling is also presented and compared with that in weak coupling.
The non-renormalization of the 3-point functions $tr X^{k_1} tr X^{k_2} tr X^{k_3}$ of chiral primary operators in N=4 super-Yang-Mills theory is one of the most striking facts to emerge from the AdS/CFT correspondence. A two-fold puzzle appears in the extremal case, e.g. k_1 = k_2 + k_3. First, the supergravity calculation involves analytic continuation in the k_i variables to define the product of a vanishing bulk coupling and an infinite integral over AdS. Second, extremal correlators are uniquely sensitive to mixing of the single-trace operators $tr X^k$ with protected multi-trace operators in the same representation of SU(4). We show that the calculation of extremal correlators from supergravity is subject to the same subtlety of regularization known for the 2-point functions, and we present a careful method which justifies the analytic continuation and shows that supergravity fields couple to single traces without admixture. We also study extremal n-point functions of chiral primary operators, and argue that Type IIB supergravity requires that their space-time form is a product of n-1 two-point functions (as in the free field approximation) multiplied by a non-renormalized coefficient. This non-renormalization property of extremal n-point functions is a new prediction of the AdS/CFT correspondence. As a byproduct of this work we obtain the cubic couplings $t phi phi$ and $s phi phi$ of fields in the dilaton and 5-sphere graviton towers of Type IIB supergravity on $AdS_5 times S^5$.
Heavy-heavy-light-light (HHLL) correlators of pairwise identical scalars in CFTs with a large central charge in any number of dimensions admit a double scaling limit where the ratio of the heavy conformal dimension to the central charge becomes large as the separation between the light operators becomes null. In this limit the stress tensor sector of a generic HHLL correlator receives contributions from the multi stress tensor operators with any number of stress tensors, as long as their twist is not increased by index contractions. We show how one can compute this leading twist stress tensor sector when the conformal dimension of the light operators is large and the stress tensor sector approximates the thermal CFT correlator. In this regime the value of the correlator is related to the length of the spacelike geodesic which approaches the boundary of the dual asymptotically AdS spacetime at the points of light operator insertions. We provide a detailed description of the infinite volume limit. In two spacetime dimensions the HHLL Virasoro vacuum block is reproduced, while in four spacetime dimensions the result is written in terms of elliptic integrals.
The genus zero contribution to the four-point correlator $langle {cal O}_{p_1}{cal O}_{p_2}{cal O}_{p_3}{cal O}_{p_4}rangle$ of half-BPS single-particle operators ${cal O}_p$ in $mathcal{N}=4$ super Yang-Mills at strong coupling computes the Virasoro-Shapiro amplitude of closed superstrings on $AdS_5times S^5$. Combining Mellin space techniques, the large $p$ limit, and data about the spectrum of two-particle operators at tree level in supergravity, we design a bootstrap algorithm which heavily constrains its $alpha$ expansion. We use crossing symmetry, polynomiality in the Mellin variables and the large $p$ limit to stratify the Virasoro-Shapiro amplitude away from the ten-dimensional flat space limit. Then we analyse the spectrum of exchanged two-particle operators at fixed order in the $alpha$ expansion. We impose that the ten-dimensional spin of the spectrum visible at that order is bounded above in the same way as in the flat space amplitude. This constraint determines the Virasoro-Shapiro amplitude in $AdS_5times S^5$ up to a small number of ambiguities at each order and we compute it explicitly for $(alpha)^{5,6,7,8,9}$. As the order of $alpha$ grows, the ten dimensional spin grows, and the set of visible two-particle operators opens up. Operators illuminated for the first time receive a string correction to their anomalous dimensions. This correction is uniquely determined and lifts the residual degeneracy of tree level supergravity due to ten-dimensional conformal symmetry. We encode the lifting of the residual degeneracy in a characteristic polynomial. This object carries information about all orders in $alpha$.It is analytic in the quantum numbers, symmetric under an $AdS_5 leftrightarrow S^5$ exchange, and it enjoys intriguing properties, which we explain and detail in various cases.