Do you want to publish a course? Click here

Thermal R-current correlators from AdS/CFT correspondence

157   0   0.0 ( 0 )
 Added by Hui Liu
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We calculate all components of thermal R-current correlators from AdS/CFT correspondence for non-zero momentum and energy. In zero momentum limit, we find an analytic expression for the components Gxx(Gyy). The dielectric function of strong coupling is also presented and compared with that in weak coupling.



rate research

Read More

The non-renormalization of the 3-point functions $tr X^{k_1} tr X^{k_2} tr X^{k_3}$ of chiral primary operators in N=4 super-Yang-Mills theory is one of the most striking facts to emerge from the AdS/CFT correspondence. A two-fold puzzle appears in the extremal case, e.g. k_1 = k_2 + k_3. First, the supergravity calculation involves analytic continuation in the k_i variables to define the product of a vanishing bulk coupling and an infinite integral over AdS. Second, extremal correlators are uniquely sensitive to mixing of the single-trace operators $tr X^k$ with protected multi-trace operators in the same representation of SU(4). We show that the calculation of extremal correlators from supergravity is subject to the same subtlety of regularization known for the 2-point functions, and we present a careful method which justifies the analytic continuation and shows that supergravity fields couple to single traces without admixture. We also study extremal n-point functions of chiral primary operators, and argue that Type IIB supergravity requires that their space-time form is a product of n-1 two-point functions (as in the free field approximation) multiplied by a non-renormalized coefficient. This non-renormalization property of extremal n-point functions is a new prediction of the AdS/CFT correspondence. As a byproduct of this work we obtain the cubic couplings $t phi phi$ and $s phi phi$ of fields in the dilaton and 5-sphere graviton towers of Type IIB supergravity on $AdS_5 times S^5$.
260 - Luca Griguolo 2012
We study at quantum level correlators of supersymmetric Wilson loops with contours lying on Hopf fibers of $S^3$. In $mathcal{N}=4$ SYM theory the strong coupling analysis can be performed using the AdS/CFT correspondence and a connected classical string surface, linking two different fibers, is presented. More precisely, the string solution describes oppositely oriented fibers with the same scalar coupling and depends on an angular parameter, interpolating between a non-BPS configuration and a BPS one. The system can be thought as an alternative deformation of the ordinary antiparallel lines giving the static quark-antiquark potential, that is indeed correctly reproduced, at weak and strong coupling, as the fibers approach one another.
We study, using the dual AdS description, the vacua of field theories where some of the gauge symmetry is broken by expectation values of scalar fields. In such vacua, operators built out of the scalar fields acquire expectation values, and we show how to calculate them from the behavior of perturbations to the AdS background near the boundary. Specific examples include the ${cal N}=4$ SYM theory, and theories on D3 branes placed on orbifolds and conifolds. We also clarify some subtleties of the AdS/CFT correspondence that arise in this analysis. In particular, we explain how scalar fields in AdS space of sufficiently negative mass-squared can be associated with CFT operators of {it two} possible dimensions. All dimensions are bounded from below by $(d-2)/2$; this is the unitarity bound for scalar operators in $d$-dimensional field theory. We further argue that the generating functional for correlators in the theory with one choice of operator dimension is a Legendre transform of the generating functional in the theory with the other choice.
We continue to develop the holographic interpretation of classical conformal blocks in terms of particles propagating in an asymptotically $AdS_3$ geometry. We study $n$-point block with two heavy and $n-2$ light fields. Using the worldline approach we propose and explicitly describe the corresponding bulk configuration, which consists of $n-3$ particles propagating in the conical defect background produced by the heavy fields. We test this general picture in the case of five points. Using the special combinatorial representation of the Virasoro conformal block we compute $5$-point classical block and find the exact correspondence with the bulk worldline action. In particular, the bulk analysis relies upon the special perturbative procedure which treats the $5$-point case as a deformation of the $4$-pt case.
103 - Igor R. Klebanov 1999
We consider duality between type 0B string theory on $AdS_5times S^5$ and the planar CFT on $N$ electric D3-branes coincident with $N$ magnetic D3-branes. It has been argued that this theory is stable up to a critical value of the `t Hooft coupling but is unstable beyond that point. We suggest that from the gauge theory point of view the development of instability is associated with singularity in the dimension of the operator corresponding to the tachyon field via the AdS/CFT map. Such singularities are common in large $N$ theories because summation over planar graphs typically has a finite radius of convergence. Hence we expect transitions between stability and instability for string theories in AdS backgrounds that are dual to certain large $N$ gauge theories: if there are tachyons for large AdS radius then they may be stabilized by reducing the radius below a critical value of order the string scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا