Do you want to publish a course? Click here

On universal black holes

80   0   0.0 ( 0 )
 Added by Marcello Ortaggio
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent results of arXiv:1907.08788 on universal black holes in $d$ dimensions are summarized. These are static metrics with an isotropy-irreducible homogeneous base space which can be consistently employed to construct solutions to virtually any metric theory of gravity in vacuum.



rate research

Read More

We prove that a generalized Schwarzschild-like ansatz can be consistently employed to construct $d$-dimensional static vacuum black hole solutions in any metric theory of gravity for which the Lagrangian is a scalar invariant constructed from the Riemann tensor and its covariant derivatives of arbitrary order. Namely, we show that, apart from containing two arbitrary functions $a(r)$ and $f(r)$ (essentially, the $g_{tt}$ and $g_{rr}$ components), in any such theory the line-element may admit as a base space {em any} isotropy-irreducible homogeneous space. Technically, this ensures that the field equations generically reduce to two ODEs for $a(r)$ and $f(r)$, and dramatically enlarges the space of black hole solutions and permitted horizon geometries for the considered theories. We then exemplify our results in concrete contexts by constructing solutions in particular theories such as Gauss-Bonnet, quadratic, $F(R)$ and $F$(Lovelock) gravity, and certain conformal gravities.
We explore how far one can go in constructing $d$-dimensional static black holes coupled to $p$-form and scalar fields before actually specifying the gravity and electrodynamics theory one wants to solve. At the same time, we study to what extent one can enlarge the space of black hole solutions by allowing for horizon geometries more general than spaces of constant curvature. We prove that a generalized Schwarzschild-like ansatz with an arbitrary isotropy-irreducible homogeneous base space (IHS) provides an answer to both questions, up to naturally adapting the gauge fields to the spacetime geometry. In particular, an IHS-Kahler base space enables one to construct magnetic and dyonic 2-form solutions in a large class of theories, including non-minimally couplings. We exemplify our results by constructing simple solutions to particular theories such as $R^2$, Gauss-Bonnet and (a sector of) Einstein-Horndeski gravity coupled to certain $p$-form and conformally invariant electrodynamics.
148 - Yoni BenTov , Joe Swearngin 2017
We present an exact solution of Einsteins equation that describes the gravitational shockwave of a massless particle on the horizon of a Kerr-Newman black hole. The backreacted metric is of the generalized Kerr-Schild form and is Type II in the Petrov classification. We show that if the background frame is aligned with shear-free null geodesics, and if the background Ricci tensor satisfies a simple condition, then all nonlinearities in the perturbation will drop out of the curvature scalars. We make heavy use of the method of spin coefficients (the Newman-Penrose formalism) in its compacted form (the Geroch-Held-Penrose formalism).
Asymptotically safe gravity is one effective approach to quantum gravity. It is important to differentiate the modified gravity inspired by asymptotically safe gravity. In this paper, we examine the matter particles dynamics near the improved version of Schwarzschild black hole. We assume that in the context of asymptotically safe gravity scenario the ambient matter surrounding the black hole is of isothermal in nature and investigate the spherical accretion of matter by deriving solutions at critical points. The analysis for the various values of the state parameter for isothermal test fluids, viz., $k=1,~1/2,~1/3,~1/4$ show the possibility of accretion onto asymptotically safe black hole. We formulate the accretion problem as Hamiltonian dynamical system and explain its phase flow in detail which reveals interesting results in asymptotically safe gravity theory.
163 - Burkhard Kleihaus , 2015
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا