No Arabic abstract
Asymptotically safe gravity is one effective approach to quantum gravity. It is important to differentiate the modified gravity inspired by asymptotically safe gravity. In this paper, we examine the matter particles dynamics near the improved version of Schwarzschild black hole. We assume that in the context of asymptotically safe gravity scenario the ambient matter surrounding the black hole is of isothermal in nature and investigate the spherical accretion of matter by deriving solutions at critical points. The analysis for the various values of the state parameter for isothermal test fluids, viz., $k=1,~1/2,~1/3,~1/4$ show the possibility of accretion onto asymptotically safe black hole. We formulate the accretion problem as Hamiltonian dynamical system and explain its phase flow in detail which reveals interesting results in asymptotically safe gravity theory.
This is an introduction to asymptotically safe quantum gravity, explaining the main idea of asymptotic safety and how it could solve the problem of predictivity in quantum gravity. In the first part, the concept of an asymptotically safe fixed point is discussed within the functional Renormalization Group framework for gravity, which is also briefly reviewed. A concise overview of key results on asymptotically safe gravity is followed by a short discussion of important open questions. The second part highlights how the interplay with matter provides observational consistency tests for all quantum-gravity models, followed by an overview of the state of results on asymptotic safety and its implications in gravity-matter models. Finally, effective asymptotic safety is briefly discussed as a scenario in which asymptotically safe gravity could be connected to other approaches to quantum gravity.
Asymptotic safety is a theoretical proposal for the ultraviolet completion of quantum field theories, in particular for quantum gravity. Significant progress on this program has led to a first characterization of the Reuter fixed point. Further advancement in our understanding of the nature of quantum spacetime requires addressing a number of open questions and challenges. Here, we aim at providing a critical reflection on the state of the art in the asymptotic safety program, specifying and elaborating on open questions of both technical and conceptual nature. We also point out systematic pathways, in various stages of practical implementation, towards answering them. Finally, we also take the opportunity to clarify some common misunderstandings regarding the program.
Standard models of regular black holes typically have asymptotically de Sitter regions at their cores. Herein we shall consider novel hollow regular black holes, those with asymptotically Minkowski cores. The reason for doing so is twofold: First, these models greatly simplify the physics in the deep core, and second, one can trade off rather messy cubic and quartic polynomial equations for somewhat more elegant special functions such as exponentials and the increasingly important Lambert $W$ function. While these hollow regular black holes share many features with the Bardeen/Hayward/Frolov regular black holes there are also significant differences.
We analyze the effects of the back reaction due to a conformal field theory (CFT) on a black hole spacetime with negative cosmological constant. We study the geometry numerically obtained by taking into account the energy momentum tensor of CFT approximated by a radiation fluid. We find a sequence of configurations without a horizon in thermal equilibrium (CFT stars), followed by a sequence of configurations with a horizon. We discuss the thermodynamic properties of the system and how back reaction effects alter the space-time structure. We also provide an interpretation of the above sequence of solutions in terms of the AdS/CFT correspondence. The dual five-dimensional description is given by the Karch-Randall model, in which a sequence of five-dimensional floating black holes followed by a sequence of brane localized black holes correspond to the above solutions.
We present a new family of asymptotically AdS four-dimensional black hole solutions with scalar hair of a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential. For a certain profile of the scalar field we solve the Einstein equations and we determine the scalar potential. Thermodynamically we show that there is a critical temperature below which there is a phase transition of a black hole with hyperbolic horizon to the new hairy black hole configuration.