Do you want to publish a course? Click here

Sustaining a Warm Corona in Active Galactic Nuclei Accretion Discs

118   0   0.0 ( 0 )
 Added by David R. Ballantyne
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Warm coronae, thick ($tau_{mathrm{T}}approx 10$-$20$, where $tau_{mathrm{T}}$ is the Thomson depth) Comptonizing regions with temperatures of $sim 1$ keV, are proposed to exist at the surfaces of accretion discs in active galactic nuclei (AGNs). By combining with the reflection spectrum, warm coronae may be responsible for producing the smooth soft excess seen in AGN X-ray spectra. This paper studies how a warm corona must adjust in order to sustain the soft excess through large changes in the AGN flux. Spectra from one-dimensional constant density and hydrostatic warm coronae models are calculated assuming the illuminating hard X-ray power-law, gas density, Thomson depth and coronal heating strength vary in response to changes in the accretion rate. We identify models that produce warm coronae with temperatures between $0.3$ and $1.1$ keV, and measure the photon indices and emitted fluxes in the $0.5$-$2$ keV and $2$-$10$ keV bands. Correlations and anti-correlations between these quantities depend on the evolution and structure of the warm corona. Tracing the path that an AGN follows through these correlations will constrain how warm coronae are heated and connected to the accretion disc. Variations in the density structure and coronal heating strength of warm coronae will lead to a variety of soft excess strengths and shapes in AGNs. A larger accretion rate will, on average, lead to a warm corona that produces a stronger soft excess, consistent with observations of local Seyfert galaxies.

rate research

Read More

83 - Hajime Inoue 2021
We study accretion environments of active galactic nuclei when a super-massive black hole wanders in a circum-nuclear region and passes through an interstellar medium there. It is expected that a Bondi-Hoyle-Lyttleton type accretion of the interstellar matter takes place and an accretion stream of matter trapped by the black hole gravitational field appears from a tail shock region. Since the trapped matter is likely to have a certain amount of specific angular momentum, the accretion stream eventually forms an accretion ring around the black hole. According to the recent study, the accretion ring consists of a thick envelope and a thin core, and angular momenta are transfered from the inner side facing to the black hole to the opposite side respectively in the envelope and the core. As a result, a thick accretion flow and a thick excretion flow extend from the envelope, and a thin accretion disk and a thin excretion disk do from the core. The thin excretion disk is predicted to terminate at some distance forming an excretion ring, while the thick excretion flow is considered to become a super-sonic wind flowing to the infinity. The thick excretion flow from the accretion ring is expected to interact with the accretion stream toward the accretion ring and to be collimated to bi-polar cones. These pictures provide a likely guide line to interpret the overall accretion environments suggested from observations.
Compact objects are expected to exist in the accretion disks of supermassive black holes (SMBHs) in active galactic nuclei (AGNs), and in the presence of such a dense environment ($sim 10^{14},{rm cm^{-3}}$), they will form a new kind of stellar population denoted as Accretion-Modified Stars (AMSs). This hypothesis is supported by recent LIGO/Virgo detection of the mergers of very high-mass stellar binary black holes (BHs). We show that the TZOs will be trapped by the SMBH-disk within a typical AGN lifetime. In the context of SMBH-disks, the rates of Bondi accretion onto BHs are $sim 10^{9}L_{rm Edd}/c^{2}$, where $L_{rm Edd}$ is the Eddington luminosity and $c$ is the speed of light. Outflows developed from the hyper-Eddington accretion strongly impact the Bondi sphere and induce episodic accretion. We show that the hyper-Eddington accretion will be halted after an accretion interval of $t_{rm a}sim 10^{5}m_{1},$s, where $m_{1}=m_{bullet}/10sunm$ is the BH mass. The kinetic energy of the outflows accumulated during $t_{rm a}$ is equivalent to 10 supernovae driving an explosion of the Bondi sphere and developing blast waves. We demonstrate that a synchrotron flare from relativistic electrons accelerated by the blast waves peaks in the soft X-ray band ($sim 0.1,$keV), significantly contributing to the radio, optical, UV, and soft X-ray emission of typical radio-quiet quasars. External inverse Compton scattering of the electrons peaks around $40,$GeV and is detectable through {it Fermi}-LAT. The flare, decaying with $t^{-6/5}$ with a few months, will appear as a slowly varying transient. The flares, occurring at a rate of a few per year in radio-quiet quasars, provide a new mechanism for explaining AGN variability.
A long-standing question in active galactic nucleus (AGN) research is how the corona is heated up to produce X-ray radiation much stronger than that arising from the viscous heating within the corona. In this paper, we carry out detailed investigations of magnetic-reconnection heating to the corona, specifically, studying how the disc and corona are self-consistently coupled with the magnetic field, and how the emergent spectra depend on the fundamental parameters of AGN. It is shown that diverse spectral shapes and luminosities over a broad bandpass from optical to X-ray can be produced from the coupled disc and corona within a limited range of the black hole mass, accretion rate and magnetic field strength. The relative strength of X-ray emission with respect to optical/ultraviolet (UV) depends on the strength of the magnetic field in the disc, which, together with accretion rate, determines the fraction of accretion energy transported and released in the corona. This refined disc-corona model is then applied to reproduce the broad-band spectral energy distributions (SEDs) of a sample of 20 bright local AGNs observed simultaneously in X-ray and optical/UV. We find that, in general, the overall observed broad-band SEDs can be reasonably reproduced, except for rather hard X-ray spectral shapes in some objects. The radiation pressure-dominant region, as previously predicted for the standard accretion disc in AGN, disappears for strong X-ray sources, revealing that AGN accretion discs are indeed commonly stable as observed. Our study suggests the disc-corona coupling model involving magnetic fields to be a promising approach for understanding the broad-band spectra of bright AGNs.
Active galactic nuclei (AGN) are prominent environments for stellar capture, growth and formation. These environments may catalyze stellar mergers and explosive transients, such as thermonuclear and core-collapse supernovae (SNe). SN explosions in AGN discs generate strong shocks, leading to unique observable signatures. We develop an analytical model which follows the evolution of the shock propagating in the disc until it eventually breaks out. We derive the peak luminosity, bolometric lightcurve, and breakout time. The peak luminosities may exceed $10^{45}$ erg s$^{-1}$ and last from hours to days. The brightest explosions occur in regions of reduced density; either off-plane, or in discs around low-mass central black holes ($sim 10^6 M_odot$), or in starved subluminous AGNs. Explosions in the latter two sites are easier to observe due to a reduced AGN background luminosity. We perform suites of 1D Lagrangian radiative hydrodynamics SNEC code simulations to validate our results and obtain the luminosity in different bands, and 2D axisymmetric Eulerian hydrodynamics code HORMONE simulations to study the morphology of the ejecta and its deviation from spherical symmetry. The observed signature is expected to be a bright blue, UV, or X-ray flare on top of the AGN luminosity from the initial shock breakout, while the subsequent red part of the lightcurve will largely be unobservable. We estimate the upper limit for the total event rate to be $mathcal{R}lesssim 100 rm yr^{-1} Gpc^{-3}$ for optimal conditions and discuss the large uncertainties in this estimate. Future high-cadence transient searches may reveal these events. Some existing tidal disruption event candidates may originate from AGN supernovae.
The disks of active galactic nuclei (AGNs) have emerged as a rich environment for the evolution of stars and their compact remnants. The very dense medium favors rapid accretion, while torques and migration traps enhance binary formation and mergers. Both long and short gamma-ray bursts (GRBs) are hence expected. We show that AGN disks constitute an ideal environment for another interesting phenomenon: the accretion induced collapse (AIC) of neutron stars (NSs) to black holes (BHs). Rapid accretion in the dense disks can cause NSs to grow to the point of exceeding the maximum mass allowed by their equation of state. General relativistic magnetohydrodynamical simulations have shown that electromagnetic signatures are expected if the NS is surrounded by a mini-disk prior to collapse, which then rapidly accretes onto the BH, and/or if the NS is highly magnetized, from reconnection of the magnetosphere during collapse. Here we compute the rates of AICs and their locations within the disks for both isolated NSs, and for (initially stable) NSs formed from NS-NS mergers. We find that the global AIC rates are $sim 0.07-20$~Gpc$^{-3}$~yr$^{-1}$, and we discuss their observable prospects and signatures as they emerge from the dense disk environments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا