No Arabic abstract
Quark partners with non-chiral couplings appear in several extensions of the Standard Model. They may have non-trivial generational structure to their couplings, and may be produced either in pairs via the strong and EM interactions, or singly via the new couplings of the model. Their decays often produce heavy quarks and gauge bosons, which will contribute to a variety of already-measured Standard Model cross-sections at the LHC. We present a study of the sensitivity of such published LHC measurements to vector-like quarks, first comparing to limits already obtained from dedicated searches, and then broadening to some so-far unstudied parameter regions.
We present sensitivity of LHC differential cross-section measurements to so-called stealth dark matter scenarios occurring in an SU(N) dark gauge group, where constituents are charged under the Standard Model and N=2 or 4. The low-energy theory contains mesons which can be produced at the LHC, and a scalar baryon dark matter (DM) candidate which cannot. We evaluate the impact of LHC measurements on the dark meson masses. Using existing lattice results, we then connect the LHC explorations to DM phenomenology, in particular considering direct-detection experiments. We show that current LHC measurements constrain DM masses in the region of 10 TeV. We discuss potential pathways to explore these models further at the LHC.
This work provides an overview on the current status of phenomenology and searches for heavy vector-like quarks, which are predicted in many models of new physics beyond the Standard Model. Searches at Tevatron and at the LHC, here listed and shortly described, have not found any evidence for new heavy fermionic states (either chiral or vector-like), and have therefore posed strong bounds on their masses: depending on specific assumptions on the interactions and on the observed final state, vector-like quarks with masses up to roughly 400-600 GeV have been excluded by all experiments. In order to be as simple and model-independent as possible, the chosen framework for the phenomenological analysis is an effective model with the addition of a vector-like quark representation (singlet, doublet or triplet under SU(2)) which couples through Yukawa interactions with all SM families. The relevance of different observables for the determination of bounds on mixing parameters is then discussed and a complete overview of possible two-body final states for every vector-like quark is provided, including their subsequent decay into SM particles. A list and short description of phenomenological analyses present in literature is also provided for reference purposes.
We consider supersymmetric extensions of the standard model with a vector-like doublet $(T , B)$ of quarks with charge $2/3$ and $-1/3$, respectively. Compared to non-supersymmetric models, there is a variety of new decay modes for the vector-like quarks, involving the extra scalars present in supersymmetry. The importance of these new modes, yielding multi-top, multi-bottom and also multi-Higgs signals, is highlighted by the analysis of several benchmark scenarios. We show how the triangles commonly used to represent the branching ratios of the `standard decay modes of the vector-like quarks involving $W$, $Z$ or Higgs bosons can be generalised to include additional channels. We give an example by recasting the limits of a recent heavy quark search for this more general case.
We consider an extension of the Standard Model involving a singlet Higgs and down type vector-like quarks in the light of the current LHC Higgs data. For a good range of the parameters of the Higgs potential, and a mass range for the heavy vector-like quark, we find that the singlet heavy Higgs arising from the production and decay of the vector-like quarks give rise to (2b~4t) signal. The subsequent decay of the top quarks to $b W^{+}$ give rise to a final state with six b quarks, two same-sign charged leptons and missing transverse momenta with observable cross-sections at the 14 TeV run of the Large Hadron Collider. The Standard Model background for such a final state is practically negligible.
We provide a comprehensive discussion, together with a complete setup for simulations, relevant for the production of a single vector-like quark at hadron colliders. Our predictions include finite width effects, signal-background interference effects and next-to-leading order QCD corrections. We explicitly apply the framework to study the single production of a vector-like quark $T$ with charge 2/3, but the same procedure can be used to analyse the single production of vector-like quarks with charge $-4/3$, $-1/3$, $2/3$ and $5/3$, when the vector-like quark interacts with the Standard Model quarks and electroweak bosons. Moreover, this procedure can be straightforwardly extended to include additional interactions with exotic particles. We provide quantitative results for representative benchmark scenarios characterised by the $T$ mass and width, and we determine the role of the interference terms for a range of masses and widths of phenomenological significance. We additionally describe in detail, both analytically and numerically, a striking feature in the invariant mass distribution appearing only in the $T to th$ channel.