Do you want to publish a course? Click here

Novel signatures for vector-like quarks

67   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We consider supersymmetric extensions of the standard model with a vector-like doublet $(T , B)$ of quarks with charge $2/3$ and $-1/3$, respectively. Compared to non-supersymmetric models, there is a variety of new decay modes for the vector-like quarks, involving the extra scalars present in supersymmetry. The importance of these new modes, yielding multi-top, multi-bottom and also multi-Higgs signals, is highlighted by the analysis of several benchmark scenarios. We show how the triangles commonly used to represent the branching ratios of the `standard decay modes of the vector-like quarks involving $W$, $Z$ or Higgs bosons can be generalised to include additional channels. We give an example by recasting the limits of a recent heavy quark search for this more general case.



rate research

Read More

This work provides an overview on the current status of phenomenology and searches for heavy vector-like quarks, which are predicted in many models of new physics beyond the Standard Model. Searches at Tevatron and at the LHC, here listed and shortly described, have not found any evidence for new heavy fermionic states (either chiral or vector-like), and have therefore posed strong bounds on their masses: depending on specific assumptions on the interactions and on the observed final state, vector-like quarks with masses up to roughly 400-600 GeV have been excluded by all experiments. In order to be as simple and model-independent as possible, the chosen framework for the phenomenological analysis is an effective model with the addition of a vector-like quark representation (singlet, doublet or triplet under SU(2)) which couples through Yukawa interactions with all SM families. The relevance of different observables for the determination of bounds on mixing parameters is then discussed and a complete overview of possible two-body final states for every vector-like quark is provided, including their subsequent decay into SM particles. A list and short description of phenomenological analyses present in literature is also provided for reference purposes.
Quark partners with non-chiral couplings appear in several extensions of the Standard Model. They may have non-trivial generational structure to their couplings, and may be produced either in pairs via the strong and EM interactions, or singly via the new couplings of the model. Their decays often produce heavy quarks and gauge bosons, which will contribute to a variety of already-measured Standard Model cross-sections at the LHC. We present a study of the sensitivity of such published LHC measurements to vector-like quarks, first comparing to limits already obtained from dedicated searches, and then broadening to some so-far unstudied parameter regions.
We investigate collider signatures of standard model extensions featuring vector-like leptons and a flavorful scalar sector. Such a framework arises naturally within asymptotically safe model building, which tames the UV behavior of the standard model towards the Planck scale and beyond. We focus on values of Yukawa couplings and masses which allow to explain the present data on the muon and electron anomalous magnetic moments. Using a CMS search based on $77.4 , rm{fb}^{-1}$ at the $sqrt{s}=13$ TeV LHC we find that flavorful vector-like leptons are excluded for masses below around $300$ GeV if they are singlets under $SU(2)_L$, and around $800$ GeV if they are doublets. Exploiting the flavor-violating-like decays of the scalars, we design novel null test observables based on opposite sign opposite flavor invariant masses. These multi-lepton distributions allow to signal new physics and to extract mass hierarchies in reach of near-future searches at the LHC and the HL-LHC.
We propose a 2-Higgs doublet model (2HDM) with a global non-Abelian flavor symmetry $mathcal{Q}_6timesmathcal{Z}_2$. This discrete group accounts for the observed pattern of fermion masses and mixing angles after spontaneous symmetry breaking. In this scenario only the third generation of fermions get their masses as in the Standard Model (SM). The masses of the remaining fermions are generated through a seesaw-like mechanism. To that end, the matter content of the 2HDM is enlarged by introducing electrically charged vector-like fermions (VLFs), right handed Majorana neutrinos and several SM scalar singlets. Here we study the processes involving VLFs that are within the reach of the Large Hadron Collider (LHC). We perform collider studies for vector-like leptons (VLLs) and vector-like quarks (VLQs), focusing on double production channels for both cases, while for VLLs single production topologies are also included. Utilizing genetic algorithms for neural network optimization, we determine the statistical significance for a hypothetical discovery at future LHC runs. In particular, we show that we can not safely exclude VLLs for masses greater than $200~mathrm{GeV}$. For VLQs in our model, we show that we can probe their masses up to 3.8 TeV, if we take only into account the high-luminosity phase of the LHC. Considering Run-III luminosities, we can also exclude VLQs for masses up to $3.4~mathrm{TeV}$. We also show how the model with predicted VLL masses accommodates the muon anomalous magnetic moment.
123 - Saleh Sultansoy 2019
First of all, an importance of the LHC and FCC based energy frontier lepton-hadron and photon-hadron colliders is emphasised. Then arguments favoring existence of new heavy isosinglet down-type quarks and vector-like isosinglet or isodoublet leptons are presented, following by historical arguments favoring new (preonic) level of matter. The importance of Super-Charm factory and GeV energy proton linac for Turkey national road map is argued. Finally, several recommendations for ESPP2020 are suggested.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا