Do you want to publish a course? Click here

Biharmonic almost complex structure

123   0   0.0 ( 0 )
 Added by Weiyong He
 Publication date 2020
  fields
and research's language is English
 Authors Weiyong He




Ask ChatGPT about the research

We introduce the notion of emph{biharmonic almost complex structure} on a compact almost Hermitian manifold and we study its regularity and existence in dimension four. First we show that there always exist smooth energy-minimizing biharmonic almost complex structures for any almost Hermitian structure on a compact almost complex four manifold, and all energy-minimizers form a compact set. Then we study the existence problem when the homotopy class of an almost complex structure is specified. We obtain existence of energy-minimizing biharmonic almost complex structures which depends on the topology of $M^4$. When $M$ is simply-connected and non-spin, then for each homotopy class which is uniquely determined by its first Chern class, there exists an energy-minimizing biharmonic almost complex structure. When $M$ is simply-connected and spin, for each first Chern class, there are exactly two homotopy classes corresponding to the first Chern class. Given a homotopy class $[tau]$ of an almost complex structure, there exists a canonical operation on the homotopy classes $p$ satisfying $p^2=text{id}$ such that $p([tau])$ and $[tau]$ have the same first Chern class. We prove that there exists an energy-minimizing biharmonic almost complex structure in (at least) one of the two homotopy classes, $[tau]$ and $p([tau])$. In general if $M$ is not necessarily simply-connected, we prove that there exists an energy-minimizing biharmonic almost complex structure in (at least) one of the two homotopy classes $[tau]$ and $p([tau])$. The study of biharmonic almost complex structures should have many applications, in particular for the smooth topology of the underlying almost complex four manifold. We briefly discuss an approach by considering the moduli space of biharmonic almost complex structures and propose a conjecture.



rate research

Read More

208 - Weiyong He , Ruiqi Jiang 2019
In this paper we consider the existence and regularity of weakly polyharmonic almost complex structures on a compact almost Hermitian manifold $M^{2m}$. Such objects satisfy the elliptic system weakly $[J, Delta^m J]=0$. We prove a very general regularity theorem for semilinear systems in critical dimensions (with emph{critical growth nonlinearities}). In particular we prove that weakly biharmonic almost complex structures are smooth in dimension four.
145 - Weiyong He 2019
We study the existence and regularity of energy-minimizing harmonic almost complex structures. We have proved results similar to the theory of harmonic maps, notably the classical results of Schoen-Uhlenbeck and recent advance by Cheeger-Naber.
76 - Christian Bohr 1998
We prove necessary and sufficient conditions for a smooth surface in a 4-manifold X to be pseudoholomorphic with respect to some almost complex structure on X. This provides a systematic approach to the construction of pseudoholomorphic curves that do not minimize the genus in their homology class.
108 - Ye-Lin Ou 2016
We continue our study [Ou4] of f-biharmonic maps and f-biharmonic submanifolds by exploring the applications of f-biharmonic maps and the relationships among biharmonicity, f-biharmonicity and conformality of maps between Riemannian manifolds. We are able to characterize harmonic maps and minimal submanifolds by using the concept of f-biharmonic maps and prove that the set of all f-biharmonic maps from 2-dimensional domain is invariant under the conformal change of the metric on the domain. We give an improved equation for f-biharmonic hypersurfaces and use it to prove some rigidity theorems about f-biharmonic hypersurfaces in nonpositively curved manifolds, and to give some classifications of f-biharmonic hypersurfaces in Einstein spaces and in space forms. Finally, we also use the improved f-biharmonic hypersurface equation to obtain an improved equation and some classifications of biharmonic conformal immersions of surfaces into a 3-manifold.
117 - Weiyong He , Bo Li 2019
We define and study the harmonic heat flow for almost complex structures which are compatible with a Riemannian structure $(M, g)$. This is a tensor-valued version of harmonic map heat flow. We prove that if the initial almost complex structure $J$ has small energy (depending on the norm $| abla J|$), then the flow exists for all time and converges to a Kahler structure. We also prove that there is a finite time singularity if the initial energy is sufficiently small but there is no Kahler structure in the homotopy class. A main technical tool is a version of monotonicity formula, similar as in the theory of the harmonic map heat flow. We also construct an almost complex structure on a flat four tori with small energy such that the harmonic heat flow blows up at finite time with such an initial data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا