Do you want to publish a course? Click here

Hyperbolic limits of Cantor set complements in the sphere

108   0   0.0 ( 0 )
 Added by Tommaso Cremaschi
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Let $M$ be a hyperbolic 3-manifold with no rank two cusps admitting an embedding in $mathbb S^3$. Then, if $M$ admits an exhaustion by $pi_1$-injective sub-manifolds there exists cantor sets $C_nsubset mathbb S^3$ such that $N_n=mathbb S^3setminus C_n$ is hyperbolic and $N_nrightarrow M$ geometrically.



rate research

Read More

109 - Nathan Broaddus 2004
Hempel has shown that the fundamental groups of knot complements are residually finite. This implies that every nontrivial knot must have a finite-sheeted, noncyclic cover. We give an explicit bound, $Phi (c)$, such that if $K$ is a nontrivial knot in the three-sphere with a diagram with $c$ crossings and a particularly simple JSJ decomposition then the complement of $K$ has a finite-sheeted, noncyclic cover with at most $Phi (c)$ sheets.
Given a link in a 3-manifold such that the complement is hyperbolic, we provide two modifications to the link, called the chain move and the switch move, that preserve hyperbolicity of the complement, with only a relatively small number of manifold-link pair exceptions, which are also classified. These modifications provide a substantial increase in the number of known hyperbolic links in the 3-sphere and other 3-manifolds.
Checkerboard surfaces in alternating link complements are used frequently to determine information about the link. However, when many crossings are added to a single twist region of a link diagram, the geometry of the link complement stabilizes (approaches a geometric limit), but a corresponding checkerboard surface increases in complexity with crossing number. In this paper, we generalize checkerboard surfaces to certain immersed surfaces, called twisted checkerboard surfaces, whose geometry better reflects that of the alternating link in many cases. We describe the surfaces, show that they are essential in the complement of an alternating link, and discuss their properties, including an analysis of homotopy classes of arcs on the surfaces in the link complement.
318 - Eaman Eftekhary 2015
We obtain a formula for the Heegaard Floer homology (hat theory) of the three-manifold $Y(K_1,K_2)$ obtained by splicing the complements of the knots $K_isubset Y_i$, $i=1,2$, in terms of the knot Floer homology of $K_1$ and $K_2$. We also present a few applications. If $h_n^i$ denotes the rank of the Heegaard Floer group $widehat{mathrm{HFK}}$ for the knot obtained by $n$-surgery over $K_i$ we show that the rank of $widehat{mathrm{HF}}(Y(K_1,K_2))$ is bounded below by $$big|(h_infty^1-h_1^1)(h_infty^2-h_1^2)- (h_0^1-h_1^1)(h_0^2-h_1^2)big|.$$ We also show that if splicing the complement of a knot $Ksubset Y$ with the trefoil complements gives a homology sphere $L$-space then $K$ is trivial and $Y$ is a homology sphere $L$-space.
For an arbitrary positive integer $n$ and a pair $(p, q)$ of coprime integers, consider $n$ copies of a torus $(p,q)$ knot placed parallel to each other on the surface of the corresponding auxiliary torus: we call this assembly a torus $n$-link. We compute economical presentations of knot groups for torus links using the groupoid version of the Seifert--van Kampen theorem. Moreover, the result for an individual torus $n$-link is generalized to the case of multiple nested torus links, where we inductively include a torus link in the interior (or the exterior) of the auxiliary torus corresponding to the previous link. The results presented here have been useful in the physics context of classifying moduli space geometries of four-dimensional ${mathcal N}=2$ superconformal field theories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا