Do you want to publish a course? Click here

Fundamental groups for torus link complements

114   0   0.0 ( 0 )
 Added by Philip C. Argyres
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

For an arbitrary positive integer $n$ and a pair $(p, q)$ of coprime integers, consider $n$ copies of a torus $(p,q)$ knot placed parallel to each other on the surface of the corresponding auxiliary torus: we call this assembly a torus $n$-link. We compute economical presentations of knot groups for torus links using the groupoid version of the Seifert--van Kampen theorem. Moreover, the result for an individual torus $n$-link is generalized to the case of multiple nested torus links, where we inductively include a torus link in the interior (or the exterior) of the auxiliary torus corresponding to the previous link. The results presented here have been useful in the physics context of classifying moduli space geometries of four-dimensional ${mathcal N}=2$ superconformal field theories.



rate research

Read More

Given a link in a 3-manifold such that the complement is hyperbolic, we provide two modifications to the link, called the chain move and the switch move, that preserve hyperbolicity of the complement, with only a relatively small number of manifold-link pair exceptions, which are also classified. These modifications provide a substantial increase in the number of known hyperbolic links in the 3-sphere and other 3-manifolds.
Checkerboard surfaces in alternating link complements are used frequently to determine information about the link. However, when many crossings are added to a single twist region of a link diagram, the geometry of the link complement stabilizes (approaches a geometric limit), but a corresponding checkerboard surface increases in complexity with crossing number. In this paper, we generalize checkerboard surfaces to certain immersed surfaces, called twisted checkerboard surfaces, whose geometry better reflects that of the alternating link in many cases. We describe the surfaces, show that they are essential in the complement of an alternating link, and discuss their properties, including an analysis of homotopy classes of arcs on the surfaces in the link complement.
The physical 3d $mathcal{N}=2$ theory T[Y] was previously used to predict the existence of some 3-manifold invariants $hat{Z}_{a}(q)$ that take the form of power series with integer coefficients, converging in the unit disk. Their radial limits at the roots of unity should recover the Witten-Reshetikhin-Turaev invariants. In this paper we discuss how, for complements of knots in $S^3$, the analogue of the invariants $hat{Z}_{a}(q)$ should be a two-variable series $F_K(x,q)$ obtained by parametric resurgence from the asymptotic expansion of the colored Jones polynomial. The terms in this series should satisfy a recurrence given by the quantum A-polynomial. Furthermore, there is a formula that relates $F_K(x,q)$ to the invariants $hat{Z}_{a}(q)$ for Dehn surgeries on the knot. We provide explicit calculations of $F_K(x,q)$ in the case of knots given by negative definite plumbings with an unframed vertex, such as torus knots. We also find numerically the first terms in the series for the figure-eight knot, up to any desired order, and use this to understand $hat{Z}_a(q)$ for some hyperbolic 3-manifolds.
115 - Sunghyuk Park 2020
The Gukov-Manolescu series, denoted by $F_K$, is a conjectural invariant of knot complements that, in a sense, analytically continues the colored Jones polynomials. In this paper we use the large color $R$-matrix to study $F_K$ for some simple links. Specifically, we give a definition of $F_K$ for positive braid knots, and compute $F_K$ for various knots and links. As a corollary, we present a class of `strange identities for positive braid knots.
Let $G$ be a finitely generated group with a finite generating set $S$. For $gin G$, let $l_S(g)$ be the length of the shortest word over $S$ representing $g$. The growth series of $G$ with respect to $S$ is the series $A(t) = sum_{n=0}^infty a_n t^n$, where $a_n$ is the number of elements of $G$ with $l_S(g)=n$. If $A(t)$ can be expressed as a rational function of $t$, then $G$ is said to have a rational growth function. We calculate explicitly the rational growth functions of $(p,q)$-torus link groups for any $p, q > 1.$ As an application, we show that their growth rates are Perron numbers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا