No Arabic abstract
The paper considers a wireless networked control system (WNCS), where a controller sends packets carrying control information to an actuator through a wireless channel to control a physical process for industrial-control applications. In most of the existing work on WNCSs, the packet length for transmission is fixed. However, from the channel-encoding theory, if a message is encoded into a longer codeword, its reliability is improved at the expense of longer delay. Both delay and reliability have great impact on the control performance. Such a fundamental delay-reliability tradeoff has rarely been considered in WNCSs. In this paper, we propose a novel WNCS, where the controller adaptively changes the packet length for control based on the current status of the physical process. We formulate a decision-making problem and find the optimal variable-length packet-transmission policy for minimizing the long-term average cost of the WNCSs. We derive a necessary and sufficient condition on the existence of the optimal policy in terms of the transmission reliabilities with different packet lengths and the control system parameter.
This paper considers a wireless networked control system (WNCS) consisting of a dynamic system to be controlled (i.e., a plant), a sensor, an actuator and a remote controller for mission-critical Industrial Internet of Things (IIoT) applications. A WNCS has two types of wireless transmissions, i.e., the sensors measurement transmission to the controller and the controllers command transmission to the actuator. In this work, we consider a practical half-duplex controller, which introduces a novel transmission-scheduling problem for WNCSs. A frequent scheduling of sensors transmission results in a better estimation of plant states at the controller and thus a higher quality of control command, but it leads to a less frequent/timely control of the plant. Therefore, considering the overall control performance of the plant in terms of its average cost function, there exists a fundamental tradeoff between the sensors and the controllers transmissions. We formulate a new problem to optimize the transmission-scheduling policy for minimizing the long-term average cost function. We derive the necessary and sufficient condition of the existence of a stationary and deterministic optimal policy that results in a bounded average cost in terms of the transmission reliabilities of the sensor-to-controller and controller-to-actuator channels. Also, we derive an easy-to-compute suboptimal policy, which notably reduces the average cost of the plant compared to a naive alternative-scheduling policy.
Wireless networked control systems (WNCSs) provide a key enabling technique for Industry Internet of Things (IIoT). However, in the literature of WNCSs, most of the research focuses on the control perspective, and has considered oversimplified models of wireless communications which do not capture the key parameters of a practical wireless communication system, such as latency, data rate and reliability. In this paper, we focus on a WNCS, where a controller transmits quantized and encoded control codewords to a remote actuator through a wireless channel, and adopt a detailed model of the wireless communication system, which jointly considers the inter-related communication parameters. We derive the stability region of the WNCS. If and only if the tuple of the communication parameters lies in the region, the average cost function, i.e., a performance metric of the WNCS, is bounded. We further obtain a necessary and sufficient condition under which the stability region is $n$-bounded, where $n$ is the control codeword blocklength. We also analyze the average cost function of the WNCS. Such analysis is non-trivial because the finite-bit control-signal quantizer introduces a non-linear and discontinuous quantization function which makes the performance analysis very difficult. We derive tight upper and lower bounds on the average cost function in terms of latency, data rate and reliability. Our analytical results provide important insights into the design of the optimal parameters to minimize the average cost within the stability region.
We investigate variable-length feedback (VLF) codes for the Gaussian point-to-point channel under maximal power, average error probability, and average decoding time constraints. Our proposed strategy chooses $K < infty$ decoding times $n_1, n_2, dots, n_K$ rather than allowing decoding at any time $n = 0, 1, 2, dots$. We consider stop-feedback, which is one-bit feedback transmitted from the receiver to the transmitter at times $n_1, n_2, ldots$ only to inform her whether to stop. We prove an achievability bound for VLF codes with the asymptotic approximation $ln M approx frac{N C(P)}{1-epsilon} - sqrt{N ln_{(K-1)}(N) frac{V(P)}{1-epsilon}}$, where $ln_{(K)}(cdot)$ denotes the $K$-fold nested logarithm function, $N$ is the average decoding time, and $C(P)$ and $V(P)$ are the capacity and dispersion of the Gaussian channel, respectively. Our achievability bound evaluates a non-asymptotic bound and optimizes the decoding times $n_1, ldots, n_K$ within our code architecture.
Technological advances have made wireless sensors cheap and reliable enough to be brought into industrial use. A major challenge arises from the fact that wireless channels introduce random packet dropouts. Power control and coding are key enabling technologies in wireless communications to ensure efficient communications. In the present work, we examine the role of power control and coding for Kalman filtering over wireless correlated channels. Two estimation architectures are considered: In the first, the sensors send their measurements directly to a single gateway. In the second scheme, wireless relay nodes provide additional links. The gateway decides on the coding scheme and the transmitter power levels of the wireless nodes. The decision process is carried out on-line and adapts to varying channel conditions in order to improve the trade-off between state estimation accuracy and energy expenditure. In combination with predictive power control, we investigate the use of multiple-description coding, zero-error coding and network coding and provide sufficient conditions for the expectation of the estimation error covariance matrix to be bounded. Numerical results suggest that the proposed method may lead to energy savings of around 50 %, when compared to an alternative scheme, wherein transmission power levels and bit-rates are governed by simple logic. In particular, zero-error coding is preferable at time instances with high channel gains, whereas multiple-description coding is superior for time instances with low gains. When channels between the sensors and the gateway are in deep fades, network coding improves estimation accuracy significantly without sacrificing energy efficiency.
Novel low-power wireless technologies and IoT applications open the door to the Industrial Internet of Things (IIoT). In this new paradigm, Wireless Sensor Networks (WSNs) must fulfil, despite energy and transmission power limitations, the challenging communication requirements of advanced manufacturing processes and technologies. In industrial networks, this is possible thanks to the availability of network infrastructure and the presence of a network coordinator that efficiently allocates the available radio resources. In this work, we consider a WSN that simultaneously transmits measurements of Networked Control Systems (NCSs) dynamics to remote state estimators over a shared packet-erasure channel. We develop a minimum transmission power control (TPC) policy for the coordination of the wireless medium by formulating an infinite horizon Markov decision process (MDP) optimization problem. We compute the policy using an approximate value iteration algorithm and provide an extensive evaluation of its parameters in different interference scenarios and NCSs dynamics. The evaluation results present a comprehensive characterization of the algorithms performance, proving that it can flexibly adapt to arbitrary use cases.