Do you want to publish a course? Click here

$F_K / F_pi$ from M{o}bius domain-wall fermions solved on gradient-flowed HISQ ensembles

75   0   0.0 ( 0 )
 Added by Nolan Miller
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We report the results of a lattice quantum chromodynamics calculation of $F_K/F_pi$ using M{o}bius domain-wall fermions computed on gradient-flowed $N_f=2+1+1$ highly-improved staggered quark (HISQ) ensembles. The calculation is performed with five values of the pion mass ranging from $130 lesssim m_pi lesssim 400$ MeV, four lattice spacings of $asim 0.15, 0.12, 0.09$ and $0.06$ fm and multiple values of the lattice volume. The interpolation/extrapolation to the physical pion and kaon mass point, the continuum, and infinite volume limits are performed with a variety of different extrapolation functions utilizing both the relevant mixed-action effective field theory expressions as well as discretization-enhanced continuum chiral perturbation theory formulas. We find that the $asim0.06$ fm ensemble is helpful, but not necessary to achieve a subpercent determination of $F_K/F_pi$. We also include an estimate of the strong isospin breaking corrections and arrive at a final result of $F_{K^pm}/F_{pi^pm} = 1.1942(45)$ with all sources of statistical and systematic uncertainty included. This is consistent with the Flavour Lattice Averaging Group average value, providing an important benchmark for our lattice action. Combining our result with experimental measurements of the pion and kaon leptonic decays leads to a determination of $|V_{us}|/|V_{ud}| = 0.2311(10)$.



rate research

Read More

We report on a sub-percent scale determination using the omega baryon mass and gradient-flow methods. The calculations are performed on 22 ensembles of $N_f=2+1+1$ highly improved, rooted staggered sea-quark configurations generated by the MILC and CalLat Collaborations. The valence quark action used is Mobius Domain-Wall fermions solved on these configurations after a gradient-flow smearing is applied with a flowtime of $t_{rm gf}=1$ in lattice units. The ensembles span four lattice spacings in the range $0.06 lesssim a lesssim 0.15$ fm, six pion masses in the range $130 lesssim m_pi lesssim 400$ MeV and multiple lattice volumes. On each ensemble, the gradient-flow scales $t_0/a^2$ and $w_0/a$ and the omega baryon mass $a m_Omega$ are computed. The dimensionless product of these quantities is then extrapolated to the continuum and infinite volume limits and interpolated to the physical light, strange and charm quark mass point in the isospin limit, resulting in the determination of $sqrt{t_0}=0.1422(14)$ fm and $w_0 = 0.1709(11)$ fm with all sources of statistical and systematic uncertainty accounted for. The dominant uncertainty in this result is the stochastic uncertainty, providing a clear path for a few-per-mille uncertainty, as recently obtained by the Budapest-Marseille-Wuppertal Collaboration.
124 - S. Basak , S. Datta , A.T. Lytle 2013
Adopting a mixed action approach, we report here results on hadron spectra containing one or more charm quarks. We use overlap valence quarks on a background of 2+1+1 flavor HISQ gauge configurations generated by the MILC collaboration. We also study the ratio of leptonic decay constants, f_Ds*/f_Ds. Results are obtained at two lattice spacings.
We report on a scale determination with gradient-flow techniques on the $N_f = 2 + 1 + 1$ HISQ ensembles generated by the MILC collaboration. The lattice scale $w_0/a$, originally proposed by the BMW collaboration, is computed using Symanzik flow at four lattice spacings ranging from 0.15 to 0.06 fm. With a Taylor series ansatz, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. We give a preliminary determination of the scale $w_0$ in physical units, along with associated systematic errors, and compare with results from other groups. We also present a first estimate of autocorrelation lengths as a function of flowtime for these ensembles.
613 - Shoichi Sasaki 2009
We present a quenched lattice calculation of the weak nucleon form factors: vector (F_V(q^2)), induced tensor (F_T(q^2)), axial-vector (F_A(q^2)) and induced pseudo-scalar (F_P(q^2)) form factors. Our simulations are performed on three different lattice sizes L^3 x T=24^3 x 32, 16^3 x 32 and 12^3 x 32 with a lattice cutoff of 1/a = 1.3 GeV and light quark masses down to about 1/4 the strange quark mass (m_{pi} = 390 MeV) using a combination of the DBW2 gauge action and domain wall fermions. The physical volume of our largest lattice is about (3.6 fm)^3, where the finite volume effects on form factors become negligible and the lower momentum transfers (q^2 = 0.1 GeV^2) are accessible. The q^2-dependences of form factors in the low q^2 region are examined. It is found that the vector, induced tensor, axial-vector form factors are well described by the dipole form, while the induced pseudo-scalar form factor is consistent with pion-pole dominance. We obtain the ratio of axial to vector coupling g_A/g_V=F_A(0)/F_V(0)=1.219(38) and the pseudo-scalar coupling g_P=m_{mu}F_P(0.88m_{mu}^2)=8.15(54), where the errors are statistical erros only. These values agree with experimental values from neutron beta decay and muon capture on the proton. However, the root mean squared radii of the vector, induced tensor and axial-vector underestimate the known experimental values by about 20%. We also calculate the pseudo-scalar nucleon matrix element in order to verify the axial Ward-Takahashi identity in terms of the nucleon matrix elements, which may be called as the generalized Goldberger-Treiman relation.
We present a quenched lattice calculation of the nucleon isovector vector and axial-vector charges gV and gA. The chiral symmetry of domain wall fermions makes the calculation of the nucleon axial charge particularly easy since the Ward-Takahashi identity requires the vector and axial-vector currents to have the same renormalization, up to lattice spacing errors of order O(a^2). The DBW2 gauge action provides enhancement of the good chiral symmetry properties of domain wall fermions at larger lattice spacing than the conventional Wilson gauge action. Taking advantage of these methods and performing a high statistics simulation, we find a significant finite volume effect between the nucleon axial charges calculated on lattices with (1.2 fm)^3 and (2.4 fm)^3 volumes (with lattice spacing, a, of about 0.15 fm). On the large volume we find gA = 1.212 +/- 0.027(statistical error) +/- 0.024(normalization error). The quoted systematic error is the dominant (known) one, corresponding to current renormalization. We discuss other possible remaining sources of error. This theoretical first principles calculation, which does not yet include isospin breaking effects, yields a value of gA only a little bit below the experimental one, 1.2670 +/- 0.0030.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا