Do you want to publish a course? Click here

Hyperreflexivity of the space of module homomorphisms between non-commutative $L^p$-spaces

129   0   0.0 ( 0 )
 Added by Jeronimo Alaminos
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Let $mathcal{M}$ be a von Neumann algebra, and let $0<p,qleinfty$. Then the space $Hom_mathcal{M}(L^p(mathcal{M}),L^q(mathcal{M}))$ of all right $mathcal{M}$-module homomorphisms from $L^p(mathcal{M})$ to $L^q(mathcal{M})$ is a reflexive subspace of the space of all continuous linear maps from $L^p(mathcal{M})$ to $L^q(mathcal{M})$. Further, the space $Hom_mathcal{M}(L^p(mathcal{M}),L^q(mathcal{M}))$ is hyperreflexive in each of the following cases: (i) $1le q<pleinfty$; (ii) $1le p,qleinfty$ and $mathcal{M}$ is injective, in which case the hyperreflexivity constant is at most $8$.



rate research

Read More

Let $mathcal{M}$ be a von Neumann algebra with a normal semifinite faithful trace $tau$. We prove that every continuous $m$-homogeneous polynomial $P$ from $L^p(mathcal{M},tau)$, with $0<p<infty$, into each topological linear space $X$ with the property that $P(x+y)=P(x)+P(y)$ whenever $x$ and $y$ are mutually orthogonal positive elements of $L^p(mathcal{M},tau)$ can be represented in the form $P(x)=Phi(x^m)$ $(xin L^p(mathcal{M},tau))$ for some continuous linear map $Phicolon L^{p/m}(mathcal{M},tau)to X$.
Based on the characterization of surjective $L^p$-isometries of unitary groups in finite factors, we describe all surjective $L^p$-isometries between Grassmann spaces of projections with the same trace value in semifinite factors.
We show that the set of Schur idempotents with hyperreflexive range is a Boolean lattice which contains all contractions. We establish a preservation result for sums which implies that the weak* closed span of a hyperreflexive and a ternary masa-bimodule is hyperreflexive, and prove that the weak* closed span of finitely many tensor products of a hyperreflexive space and a hyperreflexive range of a Schur idempotent (respectively, a ternary masa-bimodule) is hyperreflexive.
295 - Adam Dor-On , Guy Salomon 2017
We apply Arvesons non-commutative boundary theory to dilate every Toeplitz-Cuntz-Krieger family of a directed graph $G$ to a full Cuntz-Krieger family for $G$. We do this by describing all representations of the Toeplitz algebra $mathcal{T}(G)$ that have unique extension when restricted to the tensor algebra $mathcal{T}_+(G)$. This yields an alternative proof to a result of Katsoulis and Kribs that the $C^*$-envelope of $mathcal T_+(G)$ is the Cuntz-Krieger algebra $mathcal O(G)$. We then generalize our dilation results further, to the context of colored directed graphs, by investigating free products of operator algebras. These generalizations rely on results of independent interest on complete injectivity and a characterization of representations with the unique extension property for free products of operator algebras.
173 - Efton Park , Jody Trout 2007
An n-homomorphism between algebras is a linear map $phi : A to B$ such that $phi(a_1 ... a_n) = phi(a_1)... phi(a_n)$ for all elements $a_1, >..., a_n in A.$ Every homomorphism is an n-homomorphism, for all n >= 2, but the converse is false, in general. Hejazian et al. [7] ask: Is every *-preserving n-homomorphism between C*-algebras continuous? We answer their question in the affirmative, but the even and odd n arguments are surprisingly disjoint. We then use these results to prove stronger ones: If n >2 is even, then $phi$ is just an ordinary *-homomorphism. If n >= 3 is odd, then $phi$ is a difference of two orthogonal *-homomorphisms. Thus, there are no nontrivial *-linear n-homomorphisms between C*-algebras.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا