Do you want to publish a course? Click here

Schur idempotents and hyperreflexivity

164   0   0.0 ( 0 )
 Added by Rupert Levene
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We show that the set of Schur idempotents with hyperreflexive range is a Boolean lattice which contains all contractions. We establish a preservation result for sums which implies that the weak* closed span of a hyperreflexive and a ternary masa-bimodule is hyperreflexive, and prove that the weak* closed span of finitely many tensor products of a hyperreflexive space and a hyperreflexive range of a Schur idempotent (respectively, a ternary masa-bimodule) is hyperreflexive.



rate research

Read More

Let $mathcal{M}$ be a von Neumann algebra, and let $0<p,qleinfty$. Then the space $Hom_mathcal{M}(L^p(mathcal{M}),L^q(mathcal{M}))$ of all right $mathcal{M}$-module homomorphisms from $L^p(mathcal{M})$ to $L^q(mathcal{M})$ is a reflexive subspace of the space of all continuous linear maps from $L^p(mathcal{M})$ to $L^q(mathcal{M})$. Further, the space $Hom_mathcal{M}(L^p(mathcal{M}),L^q(mathcal{M}))$ is hyperreflexive in each of the following cases: (i) $1le q<pleinfty$; (ii) $1le p,qleinfty$ and $mathcal{M}$ is injective, in which case the hyperreflexivity constant is at most $8$.
184 - G. K. Eleftherakis 2014
Recently a new equivalence relation between weak* closed operator spaces acting on Hilbert spaces has appeared. Two weak* closed operator spaces U, V are called weak TRO equivalent if there exist ternary rings of operators M_i, i=1,2 such that U=[ M_2 V M_1^*]^{-w^*}, V=[ M_2^* U M_1]^{-w^*} . Weak TRO equivalent spaces are stably isomorphic, and conversely, stably isomorphic dual operator spaces have normal completely isometric representations with weak TRO equivalent images. In this paper, we prove that if cl U and V are weak TRO equivalent operator spaces and the space of I x I matrices with entries in U, M_I^w( U), is hyperreflexive for suitable infinite I, then so is M_I^w( V). We describe situations where if L1, L are isomorphic lattices, then the corresponding algebras Alg{L1}, Alg{L2} have the same complete hyperreflexivity constant.
144 - Victor Kaftal 2009
The main result of this paper is the extension of the Schur-Horn Theorem to infinite sequences: For two nonincreasing nonsummable sequences x and y that converge to 0, there exists a compact operator A with eigenvalue list y and diagonal sequence x if and only if y majorizes x (sum_{j=1}^n x_j le sum_{j=1}^n y_j for all n) if and only if x = Qy for some orthostochastic matrix Q. The similar result requiring equality of the infinite series in the case that the sequences x and y are summable is an extension of a recent theorem by Arveson and Kadison. Our proof depends on the construction and analysis of an infinite product of T-transform matrices. Further results on majorization for infinite sequences providing intermediate sequences generalize known results from the finite case. Majorization properties and invariance under various classes of stochastic matrices are then used to characterize arithmetic mean closed operator ideals.
A general form of contractive idempotent functionals on coamenable locally compact quantum groups is obtained, generalising the result of Greenleaf on contractive measures on locally compact groups. The image of a convolution operator associated to a contractive idempotent is shown to be a ternary ring of operators. As a consequence a one-to-one correspondence between contractive idempotents and a certain class of ternary rings of operators is established.
We consider the general linear group as an invariant of von Neumann factors. We prove that up to complement, a set consisting of all idempotents generating the same right ideal admits a characterisation in terms of properties of the general linear group of a von Neumann factor. We prove that for two Neumann factors, any bijection of their general linear groups induces a bijection of their idempotents with the following additional property: If two idempotents or their two complements generate the same right ideal, then so does their image. This generalises work on regular rings, such include von Neumann factors of type $I_{n}$, $n < infty$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا