No Arabic abstract
Slender marine structures such as deep-water riser systems are continuously exposed to currents leading to vortex-induced vibrations (VIV) of the structure. This may result in amplified drag loads and fast accumulation of fatigue damage. Consequently, accurate prediction of VIV responses is of great importance for the safe design and operation of marine risers. Model tests with elastic pipes have shown that VIV responses are influenced by many structural and hydrodynamic parameters, which have not been fully modelled in present frequency domain VIV prediction tools. Traditionally, predictions have been computed using a single set of hydrodynamic parameters, often leading to inconsistent prediction accuracy when compared with observed field measurements and experimental data. Hence, it is necessary to implement a high safety factor of 10 - 20 in the riser design, which increases development cost and adds extra constraints in the field operation. One way to compensate for the simplifications in the mathematical prediction model is to apply adaptive parameters to describe different riser responses. The objective of this work is to demonstrate a new method to improve the prediction consistency and accuracy by applying adaptive hydrodynamic parameters. In the present work, a four-step approach has been proposed: First, the measured VIV response will be analysed to identify key parameters to represent the response characteristics. These parameters will be grouped using data clustering algorithms. Secondly, optimal hydrodynamic parameters will be identified for each data group by optimisation against measured data. Thirdly, the VIV response using the obtained parameters will be calculated and the prediction accuracy evaluated. The correct hydrodynamic parameters to be used for new cases can be obtained from the clustering. This concept has been demonstrated with examples from experimental data.
An innovative physics-guided learning algorithm for predicting the mechanical response of materials and structures is proposed in this paper. The key concept of the proposed study is based on the fact that physics models are governed by Partial Differential Equation (PDE), and its loading/ response mapping can be solved using Finite Element Analysis (FEA). Based on this, a special type of deep convolutional neural network (DCNN) is proposed that takes advantage of our prior knowledge in physics to build data-driven models whose architectures are of physics meaning. This type of network is named as FEA-Net and is used to solve the mechanical response under external loading. Thus, the identification of a mechanical system parameters and the computation of its responses are treated as the learning and inference of FEA-Net, respectively. Case studies on multi-physics (e.g., coupled mechanical-thermal analysis) and multi-phase problems (e.g., composite materials with random micro-structures) are used to demonstrate and verify the theoretical and computational advantages of the proposed method.
Solution of Ordinary Differential Equation (ODE) model of dynamical system may not agree with its observed values. Often this discrepancy can be attributed to unmodeled forcings in the evolution rule of the dynamical system. In this article, an approach for data-based model improvement is described which exploits the geometric constraints imposed by the system observations to estimate these unmodeled terms. The nominal model is augmented using these extra forcing terms to make predictions. This approach is applied to navigational satellite orbit prediction to bring down the error to approximately 12% of the error when using the nominal force model for a 2-hour prediction. In another example improved temperature predictions over the nominal heat equation are obtained for one-dimensional conduction.
We demonstrate an adaptive sampling approach for computing the probability of a rare event for a set of three-dimensional airplane geometries under various flight conditions. We develop a fully automated method to generate parameterized airplanes geometries and create volumetric mesh for viscous CFD solution. With the automatic geometry and meshing, we perform the adaptive sampling procedure to compute the probability of the rare event. We show that the computational cost of our adaptive sampling approach is hundreds of times lower than a brute-force Monte Carlo method.
In this paper we make progress on the unsupervised task of mining arbitrarily shaped clusters in highly noisy datasets, which is a task present in many real-world applications. Based on the fundamental work that first applies a wavelet transform to data clustering, we propose an adaptive clustering algorithm, denoted as AdaWave, which exhibits favorable characteristics for clustering. By a self-adaptive thresholding technique, AdaWave is parameter free and can handle data in various situations. It is deterministic, fast in linear time, order-insensitive, shape-insensitive, robust to highly noisy data, and requires no pre-knowledge on data models. Moreover, AdaWave inherits the ability from the wavelet transform to cluster data in different resolutions. We adopt the grid labeling data structure to drastically reduce the memory consumption of the wavelet transform so that AdaWave can be used for relatively high dimensional data. Experiments on synthetic as well as natural datasets demonstrate the effectiveness and efficiency of our proposed method.
We propose a Molecular Hypergraph Convolutional Network (MolHGCN) that predicts the molecular properties of a molecule using the atom and functional group information as inputs. Molecules can contain many types of functional groups, which will affect the properties the molecules. For example, the toxicity of a molecule is associated with toxicophores, such as nitroaromatic groups and thiourea. Conventional graph-based methods that consider the pair-wise interactions between nodes are inefficient in expressing the complex relationship between multiple nodes in a graph flexibly, and applying multi-hops may result in oversmoothing and overfitting problems. Hence, we propose MolHGCN to capture the substructural difference between molecules using the atom and functional group information. MolHGCN constructs a hypergraph representation of a molecule using functional group information from the input SMILES strings, extracts hidden representation using a two-stage message passing process (atom and functional group message passing), and predicts the properties of the molecules using the extracted hidden representation. We evaluate the performance of our model using Tox21, ClinTox, SIDER, BBBP, BACE, ESOL, FreeSolv and Lipophilicity datasets. We show that our model is able to outperform other baseline methods for most of the datasets. We particularly show that incorporating functional group information along with atom information results in better separability in the latent space, thus increasing the prediction accuracy of the molecule property prediction.