Do you want to publish a course? Click here

Spectral broadening of optical transitions at tunneling resonances in InAs/GaAs coupled quantum dot pairs

392   0   0.0 ( 0 )
 Added by Cameron Jennings
 Publication date 2020
  fields Physics
and research's language is English
 Authors P. Kumar




Ask ChatGPT about the research

We report on linewidth analysis of optical transitions in InAs/GaAs coupled quantum dots as a function of bias voltage, temperature, and tunnel coupling strength. A significant line broadening up to 100 $mu$eV is observed at hole tunneling resonances where the coherent tunnel coupling between spatially direct and indirect exciton states is maximized, corresponding to a phonon-assisted transition rate of 150 ns${}^{-1}$ at 20 K. With increasing temperature, the linewidth shows broadening characteristic of single-phonon transitions. The linewidth as a function of tunnel coupling strength tracks the theoretical prediction of linewidth broadening due to phonon-assisted transitions, and is maximized with an energy splitting between the two exciton branches of 0.8$-$0.9 meV. This report highlights the linewidth broadening mechanisms and fundamental aspects of the interaction between these systems and the local environment.



rate research

Read More

Two dimensional InAs/GaAs quantum ring (QR) is considered using the effective potential approach. The symmetry of QR shape is violated as it is in the well-known Bohigas annular billiard. We calculate energy spectrum and studied the spatial localization of a single electron in such QR. For weak violation of the QR shape symmetry, the spectrum is presented as a set of quasi-doublets. Tunneling between quasi-doublet states is studied by the dependence on energy of the states. The dependence is changed with variation of the QR geometry that is related to the eccentricity of the QR. An interpretation of the experimental result obtained in [1] is proposed. We show that the chaos-assisted tunneling effect found in this paper can be explained by inter-band interactions occurred by anti-crossing of the levels with different radial quantum numbers.
189 - C. Bardot , M. Schwab , M. Bayer 2005
The exciton lifetimes $T_1$ in arrays of InAs/GaAs vertically coupled quantum dot pairs have been measured by time-resolved photoluminescence. A considerable reduction of $T_1$ by up to a factor of $sim$ 2 has been observed as compared to a quantum dots reference, reflecting the inter-dot coherence. Increase of the molecular coupling strength leads to a systematic decrease of $T_1$ with decreasing barrier width, as for wide barriers a fraction of structures shows reduced coupling while for narrow barriers all molecules appear to be well coupled. The coherent excitons in the molecules gain the oscillator strength of the excitons in the two separate quantum dots halving the exciton lifetime. This superradiance effect contributes to the previously observed increase of the homogeneous exciton linewidth, but is weaker than the reduction of $T_2$. This shows that as compared to the quantum dots reference pure dephasing becomes increasingly important for the molecules.
We have studied theoretically the type-II GaAsSb capped InAs quantum dots for two structures differing in the composition of the capping layer, being either (i) constant or (ii) with Sb accumulation above the apex of the dot. We have found that the hole states are segmented and resemble the states in the quantum dot molecules. The two-hole states form singlet and triplet with the splitting energy of 4{mu}eV / 325{mu}eV for the case (i) / (ii). We have also tested the possibility to tune the splitting by vertically applied magnetic field. As the predicted tunability range was limited, we propose an approach for its enhancement.
We report on the resonant optical pumping of the |pm1> spin states of a single Mn dopant in an InAs/GaAs quantum dot embedded itself in a charge tuneable device. The experiment relies on a W scheme of transitions reached when a suitable longitudinal magnetic field is applied. The optical pumping is achieved via the resonant excitation of the central {Lambda} system at the neutral exciton X0 energy. For a specific gate voltage, the red-shifted photoluminescence of the charged exciton X- is observed, which allows non-destructive readout of the spin polarization. An arbitrary spin preparation in the |+1> or |-1> state characterized by a polarization near or above 50% is evidenced.
A scheme of resonant tunneling through the metastable state of semiconductor quantum dot is presented and implemented in the transport study of freestanding InAs quantum dots grown on GaAs(001) under illumination using conductive atomic force microscopy. The metastable state is achieved by capturing one photoexcited Fermi hole in the valence energy level of InAs quantum dot. Resonant tunneling through single quantum dot can be observed at room temperature due to the existence of metastable state. The amplitude of tunneling current depends on the barrier arrangement and the concentration of photoexcited holes around the quantum dot, but is found steady when the height of dot varies from 1.8 to 9.9 nm, which are in good agreement with the proposed model. The experiment demonstrates a solution of room temperature operated single electron device to amplify the photocurrent by the singularity of resonant tunneling in epitaxial quantum dot.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا