No Arabic abstract
Aims. The mass discrepancy between the observed population of double neutron star binaries by radio pulsar observations and gravitational-wave observation requires an explanation. Methods. Binary population synthesis calculations are performed, and their results are compared with the radio and the gravitational-wave observations simultaneously. Results. Simulations of binary evolution are used to link different observations of double neutron star binaries with each other. The progenitor of GW190425 is investigated in more detail. A distribution of masses and merger times of the possible progenitors is presented. Conclusions. A mass discrepancy between the radio pulsars in the Milky Way with another neutron star companion and the inferred masses from gravitational-wave observations of those kind of merging systems is naturally found in binary evolution.
The discovery of a radioactively powered kilonova associated with the binary neutron star merger GW170817 was the first - and still only - confirmed electromagnetic counterpart to a gravitational-wave event. However, observations of late-time electromagnetic emission are in tension with the expectations from standard neutron-star merger models. Although the large measured ejecta mass is potentially explained by a progenitor system that is asymmetric in terms of the stellar component masses, i.e. with a mass ratio $q$ of 0.7-0.8, the known Galactic population of merging double neutron star (DNS) systems (i.e. those that will coalesce within billions of years or less) has, until now, only consisted of nearly equal-mass ($q > 0.9$) binaries. PSR J1913+1102 is a DNS system in a 5-hour, low-eccentricity ($e = 0.09$) orbit, implying an orbital separation of 1.8 solar radii, with the two neutron stars predicted to coalesce in 470 million years due to gravitational-wave emission. Here we report that the masses of the two neutron stars, as measured by a dedicated pulsar timing campaign, are $1.62 pm 0.03$ and $1.27 pm 0.03$ solar masses for the pulsar and companion neutron star, respectively; with a measured mass ratio $q = 0.78 pm 0.03$, it is the most asymmetric DNS among known merging systems. Based on this detection, our population synthesis analysis implies that such asymmetric binaries represent between 2 and 30% (90% confidence) of the total population of merging DNS binaries. The coalescence of a member of this population offers a possible explanation for the anomalous properties of GW170817, including the observed kilonova emission from that event.
Heavy elements like gold, platinum or uranium are produced in the r-process, which needs neutron-rich and explosive environments. Neutron star mergers are a promising candidate for an r-process site. They exhibit three different channels for matter ejection fulfilling these conditions: dynamic ejecta due to tidal torques, neutrino-driven winds and evaporating matter from the accretion disk. We present a first study of the integrated nucleosynthesis for a neutrino-driven wind from a neutron star merger with a hyper-massive neutron star. Trajectories from a recent hydrodynamical simulation are divided into four different angle regions and post-processed with a reaction network. We find that the electron fraction varies around $Y_e approx 0.1 - 0.4$, but its distribution differs for every angle of ejection. Hence, the wind ejecta do not undergo a robust r-process, but rather possess distinct nucleosynthesis yields depending on the angle range. Compared to the dynamic ejecta, a smaller amount of neutron-rich matter gets unbound, but the production of lighter heavy elements with $A lesssim 130$ in the neutrino-driven wind can complement the strong r-process of the dynamic ejecta.
We present fitting formulae for the dynamical ejecta properties and remnant disk masses from a large sample of numerical relativity simulations. The considered data include some of the latest simulations with microphysical nuclear equations of state (EOS) and neutrino transport as well as other results with polytropic EOS available in the literature. Our analysis indicates that the broad features of the dynamical ejecta and disk properties can be captured by fitting expressions that depend on mass ratio and reduced tidal parameter. The comparative analysis of literature data shows that microphysics and neutrino absorption have a significant impact on the dynamical ejecta properties. Microphysical nuclear equations of state lead to average velocities smaller than polytropic EOS, while including neutrino absorption results in larger average ejecta masses and electron fractions. Hence, microphysics and neutrino transport are necessary to obtain quantitative models of the ejecta in terms of the binary parameters.
In order to extract maximal information from neutron-star merger signals, both gravitational and electromagnetic, we need to ensure that our theoretical models/numerical simulations faithfully represent the extreme physics involved. This involves a range of issues, with the finite temperature effects regulating many of the relevant phenomena. As a step towards understanding these issues, we explore the conditions for $beta$-equilibrium in neutron star matter for the densities and temperatures reached in a binary neutron star merger. Using the results from our out-of-equilibrium merger simulation, we consider how different notions of equilibrium may affect the merger dynamics, raising issues that arise when attempting to account for these conditions in future simulations. These issues are both computational and conceptual. We show that the effects lead to, in our case, a softening of the equation of state in some density regions, and to composition changes that affect processes that rely on deviation from equilibrium, such as bulk viscosity, both in terms of the magnitude and the equilibration timescales inherent to the relevant set of reactions. We also demonstrate that it is difficult to determine exactly which equilibrium conditions are relevant in which regions of the matter due to the dependence on neutrino absorption, further complicating the calculation of the reactions that work to restore the matter to equilibrium.
We describe an unambiguous gravitational-wave signature to identify the occurrence of a strong phase transition from hadronic matter to deconfined quark matter in neutron star mergers. Such a phase transition leads to a strong softening of the equation of state and hence to more compact merger remnants compared to purely hadronic models. If a phase transition takes place during merging, this results in a characteristic increase of the dominant postmerger gravitational-wave frequency relative to the tidal deformability characterizing the inspiral phase. By comparing results from different purely hadronic and hybrid models we show that a strong phase transition can be identified from a single, simultaneous measurement of pre- and postmerger gravitational waves. Furthermore, we present new results for hybrid star mergers, which contain quark matter already during the inspiral stage. Also for these systems we find that the postmerger GW frequency is increased compared to purely hadronic models. We thus conclude that also hybrid star mergers with an onset of the hadron-quark phase transition at relatively low densities may lead to the very same characteristic signature of quark deconfinement in the postmerger GW signal as systems undergoing the phase transition during merging.