No Arabic abstract
Heavy elements like gold, platinum or uranium are produced in the r-process, which needs neutron-rich and explosive environments. Neutron star mergers are a promising candidate for an r-process site. They exhibit three different channels for matter ejection fulfilling these conditions: dynamic ejecta due to tidal torques, neutrino-driven winds and evaporating matter from the accretion disk. We present a first study of the integrated nucleosynthesis for a neutrino-driven wind from a neutron star merger with a hyper-massive neutron star. Trajectories from a recent hydrodynamical simulation are divided into four different angle regions and post-processed with a reaction network. We find that the electron fraction varies around $Y_e approx 0.1 - 0.4$, but its distribution differs for every angle of ejection. Hence, the wind ejecta do not undergo a robust r-process, but rather possess distinct nucleosynthesis yields depending on the angle range. Compared to the dynamic ejecta, a smaller amount of neutron-rich matter gets unbound, but the production of lighter heavy elements with $A lesssim 130$ in the neutrino-driven wind can complement the strong r-process of the dynamic ejecta.
We investigate beta-interactions of free nucleons and their impact on the electron fraction (Y_e) and r-process nucleosynthesis in ejecta characteristic of binary neutron star mergers (BNSMs). For that we employ trajectories from a relativistic BNSM model to represent the density-temperature evolutions in our parametric study. In the high-density environment, positron captures decrease the neutron richness at the high temperatures predicted by the hydrodynamic simulation. Circumventing the complexities of modelling three-dimensional neutrino transport, (anti)neutrino captures are parameterized in terms of prescribed neutrino luminosities and mean energies, guided by published results and assumed as constant in time. Depending sensitively on the adopted neutrino-antineutrino luminosity ratio, neutrino processes increase Y_e to values between 0.25 and 0.40, still allowing for a successful r-process compatible with the observed solar abundance distribution and a significant fraction of the ejecta consisting of r-process nuclei. If the electron neutrino luminosities and mean energies are relatively large compared to the antineutrino properties, the mean Y_e might reach values >0.40 so that neutrino captures seriously compromise the success of the r-process. In this case, the r-abundances remain compatible with the solar distribution, but the total amount of ejected r-material is reduced to a few percent, because the production of iron-peak elements is favored. Proper neutrino physics, in particular also neutrino absorption, have to be included in BNSM simulations before final conclusions can be drawn concerning r-processing in this environment and concerning observational consequences like kilonovae, whose peak brightness and color temperature are sensitive to the composition-dependent opacity of the ejecta.
The rapid-neutron-capture (r) process is responsible for synthesizing many of the heavy elements observed in both the solar system and Galactic metal-poor halo stars. Simulations of r-process nucleosynthesis can reproduce abundances derived from observations with varying success, but so far fail to account for the observed over-enhancement of actinides, present in about 30% of r-process-enhanced stars. In this work, we investigate actinide production in the dynamical ejecta of a neutron star merger and explore if varying levels of neutron richness can reproduce the actinide boost. We also investigate the sensitivity of actinide production on nuclear physics properties: fission distribution, beta-decay, and mass model. For most cases, the actinides are over-produced in our models if the initial conditions are sufficiently neutron-rich for fission cycling. We find that actinide production can be so robust in the dynamical ejecta that an additional lanthanide-rich, actinide-poor component is necessary in order to match observations of actinide-boost stars. We present a simple actinide-dilution model that folds in estimated contributions from two nucleosynthetic sites within a merger event. Our study suggests that while the dynamical ejecta of a neutron star merger is a likely production site for the formation of actinides, a significant contribution from another site or sites (e.g., the neutron star merger accretion disk wind) is required to explain abundances of r-process-enhanced, metal-poor stars.
Although the rapid neutron-capture process, or r-process, is fundamentally important for explaining the origin of approximately half of the stable nuclei with A > 60, the astrophysical site of this process has not been identified yet. Here we study r-process nucleosynthesis in material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars (NSs) and within milliseconds afterwards. For the first time we make use of relativistic hydrodynamical simulations of such events, defining consistently the conditions that determine the nucleosynthesis, i.e., neutron enrichment, entropy, early density evolution and thus expansion timescale, and ejecta mass. We find that 10^{-3}-10^{-2} solar masses are ejected, which is enough for mergers to be the main source of heavy (A > 140) galactic r-nuclei for merger rates of some 10^{-5} per year. While asymmetric mergers eject 2-3 times more mass than symmetric ones, the exact amount depends weakly on whether the NSs have radii of ~15 km for a stiff nuclear equation of state (EOS) or ~12 km for a soft EOS. R-process nucleosynthesis during the decompression becomes largely insensitive to the detailed conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. Estimating the light curve powered by the radioactive decay heating of r-process nuclei with an approximative model, we expect high emission in the B-V-R bands for 1-2 days with potentially observable longer duration in the case of asymmetric mergers because of the larger ejecta mass.
We present a coherent study of the impact of neutrino interactions on the r-process element nucleosynthesis and the heating rate produced by the radioactive elements synthesised in the dynamical ejecta of neutron star-neutron star (NS-NS) mergers. We have studied the material ejected from four NS-NS merger systems based on the hydrodynamical simulations of Ardevol-Pulpillo et al. (2019) which handle neutrino effects in an elaborate way by including neutrino equilibration with matter in optically thick regions and re-absorption in optically thin regions. We find that the neutron richness of the dynamical ejecta is significantly affected by the neutrinos emitted by the post-merger remnant, in particular when compared to a case neglecting all neutrino interactions. Our nucleosynthesis results show that a solar-like distribution of r-process elements with mass numbers $A gtrsim 90$ is produced, including a significant enrichment in Sr and a reduced production of actinides compared to simulations without inclusion of the nucleonic weak processes. The composition of the ejected matter as well as the corresponding rate of radioactive decay heating are found to be rather independent of the system mass asymmetry and the adopted equation of state. This approximate degeneracy in abundance pattern and heating rates can be favourable for extracting the ejecta properties from kilonova observations. Part II of this work will study the light curve produced by the dynamical ejecta of our four NS merger models.
With the recent advent of multi-messenger gravitational-wave astronomy and in anticipation of more sensitive, next-generation gravitational-wave detectors, we investigate the dynamics, gravitational-wave emission, and nucleosynthetic yields of numerous eccentric binary neutron-star mergers having different equations of state. For each equation of state we vary the orbital properties around the threshold of immediate merger, as well as the binary mass ratio. In addition to a study of the gravitational-wave emission including $f$-mode oscillations before and after merger, we couple the dynamical ejecta output from the simulations to the nuclear-reaction network code texttt{SkyNet} to compute nucleosynthetic yields and compare to the corresponding results in the case of a quasi-circular merger. We find that the amount and velocity of dynamically ejected material is always much larger than in the quasi-circular case, reaching maximal values of $M_{rm ej, max} sim 0.1 , M_{odot}$ and $v_{rm max}/c sim 0.75$. At the same time, the properties of this material are rather insensitive to the details of the orbit, such as pericenter distance or post-encounter apoastron distance. Furthermore, while the composition of the ejected matter depends on the orbital parameters and on the equation of state, the relative nucleosynthetic yields do not, thus indicating that kilonova signatures could provide information on the orbital properties of dynamically captured neutron-star binaries.