Do you want to publish a course? Click here

The Statistical Complexity of Early-Stopped Mirror Descent

304   0   0.0 ( 0 )
 Added by Tomas Vaskevicius
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recently there has been a surge of interest in understanding implicit regularization properties of iterative gradient-based optimization algorithms. In this paper, we study the statistical guarantees on the excess risk achieved by early-stopped unconstrained mirror descent algorithms applied to the unregularized empirical risk with the squared loss for linear models and kernel methods. By completing an inequality that characterizes convexity for the squared loss, we identify an intrinsic link between offset Rademacher complexities and potential-based convergence analysis of mirror descent methods. Our observation immediately yields excess risk guarantees for the path traced by the iterates of mirror descent in terms of offset complexities of certain function classes depending only on the choice of the mirror map, initialization point, step-size, and the number of iterations. We apply our theory to recover, in a clean and elegant manner via rather short proofs, some of the recent results in the implicit regularization literature, while also showing how to improve upon them in some settings.



rate research

Read More

This paper studies early-stopped mirror descent applied to noisy sparse phase retrieval, which is the problem of recovering a $k$-sparse signal $mathbf{x}^starinmathbb{R}^n$ from a set of quadratic Gaussian measurements corrupted by sub-exponential noise. We consider the (non-convex) unregularized empirical risk minimization problem and show that early-stopped mirror descent, when equipped with the hyperbolic entropy mirror map and proper initialization, achieves a nearly minimax-optimal rate of convergence, provided the sample size is at least of order $k^2$ (modulo logarithmic term) and the minimum (in modulus) non-zero entry of the signal is on the order of $|mathbf{x}^star|_2/sqrt{k}$. Our theory leads to a simple algorithm that does not rely on explicit regularization or thresholding steps to promote sparsity. More generally, our results establish a connection between mirror descent and sparsity in the non-convex problem of noisy sparse phase retrieval, adding to the literature on early stopping that has mostly focused on non-sparse, Euclidean, and convex settings via gradient descent. Our proof combines a potential-based analysis of mirror descent with a quantitative control on a variational coherence property that we establish along the path of mirror descent, up to a prescribed stopping time.
116 - Fan Wu , Patrick Rebeschini 2021
We study discrete-time mirror descent applied to the unregularized empirical risk in matrix sensing. In both the general case of rectangular matrices and the particular case of positive semidefinite matrices, a simple potential-based analysis in terms of the Bregman divergence allows us to establish convergence of mirror descent -- with different choices of the mirror maps -- to a matrix that, among all global minimizers of the empirical risk, minimizes a quantity explicitly related to the nuclear norm, the Frobenius norm, and the von Neumann entropy. In both cases, this characterization implies that mirror descent, a first-order algorithm minimizing the unregularized empirical risk, recovers low-rank matrices under the same set of assumptions that are sufficient to guarantee recovery for nuclear-norm minimization. When the sensing matrices are symmetric and commute, we show that gradient descent with full-rank factorized parametrization is a first-order approximation to mirror descent, in which case we obtain an explicit characterization of the implicit bias of gradient flow as a by-product.
We analyze continuous-time mirror descent applied to sparse phase retrieval, which is the problem of recovering sparse signals from a set of magnitude-only measurements. We apply mirror descent to the unconstrained empirical risk minimization problem (batch setting), using the square loss and square measurements. We provide a convergence analysis of the algorithm in this non-convex setting and prove that, with the hypentropy mirror map, mirror descent recovers any $k$-sparse vector $mathbf{x}^starinmathbb{R}^n$ with minimum (in modulus) non-zero entry on the order of $| mathbf{x}^star |_2/sqrt{k}$ from $k^2$ Gaussian measurements, modulo logarithmic terms. This yields a simple algorithm which, unlike most existing approaches to sparse phase retrieval, adapts to the sparsity level, without including thresholding steps or adding regularization terms. Our results also provide a principled theoretical understanding for Hadamard Wirtinger flow [58], as Euclidean gradient descent applied to the empirical risk problem with Hadamard parametrization can be recovered as a first-order approximation to mirror descent in discrete time.
This work considers low-rank canonical polyadic decomposition (CPD) under a class of non-Euclidean loss functions that frequently arise in statistical machine learning and signal processing. These loss functions are often used for certain types of tensor data, e.g., count and binary tensors, where the least squares loss is considered unnatural.Compared to the least squares loss, the non-Euclidean losses are generally more challenging to handle. Non-Euclidean CPD has attracted considerable interests and a number of prior works exist. However, pressing computational and theoretical challenges, such as scalability and convergence issues, still remain. This work offers a unified stochastic algorithmic framework for large-scale CPD decomposition under a variety of non-Euclidean loss functions. Our key contribution lies in a tensor fiber sampling strategy-based flexible stochastic mirror descent framework. Leveraging the sampling scheme and the multilinear algebraic structure of low-rank tensors, the proposed lightweight algorithm ensures global convergence to a stationary point under reasonable conditions. Numerical results show that our framework attains promising non-Euclidean CPD performance. The proposed framework also exhibits substantial computational savings compared to state-of-the-art methods.
317 - Ravi Ganti 2015
We consider the problem of learning convex aggregation of models, that is as good as the best convex aggregation, for the binary classification problem. Working in the stream based active learning setting, where the active learner has to make a decision on-the-fly, if it wants to query for the label of the point currently seen in the stream, we propose a stochastic-mirror descent algorithm, called SMD-AMA, with entropy regularization. We establish an excess risk bounds for the loss of the convex aggregate returned by SMD-AMA to be of the order of $Oleft(sqrt{frac{log(M)}{{T^{1-mu}}}}right)$, where $muin [0,1)$ is an algorithm dependent parameter, that trades-off the number of labels queried, and excess risk.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا