Do you want to publish a course? Click here

A Continuous-Time Mirror Descent Approach to Sparse Phase Retrieval

98   0   0.0 ( 0 )
 Added by Fan Wu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We analyze continuous-time mirror descent applied to sparse phase retrieval, which is the problem of recovering sparse signals from a set of magnitude-only measurements. We apply mirror descent to the unconstrained empirical risk minimization problem (batch setting), using the square loss and square measurements. We provide a convergence analysis of the algorithm in this non-convex setting and prove that, with the hypentropy mirror map, mirror descent recovers any $k$-sparse vector $mathbf{x}^starinmathbb{R}^n$ with minimum (in modulus) non-zero entry on the order of $| mathbf{x}^star |_2/sqrt{k}$ from $k^2$ Gaussian measurements, modulo logarithmic terms. This yields a simple algorithm which, unlike most existing approaches to sparse phase retrieval, adapts to the sparsity level, without including thresholding steps or adding regularization terms. Our results also provide a principled theoretical understanding for Hadamard Wirtinger flow [58], as Euclidean gradient descent applied to the empirical risk problem with Hadamard parametrization can be recovered as a first-order approximation to mirror descent in discrete time.



rate research

Read More

This paper studies early-stopped mirror descent applied to noisy sparse phase retrieval, which is the problem of recovering a $k$-sparse signal $mathbf{x}^starinmathbb{R}^n$ from a set of quadratic Gaussian measurements corrupted by sub-exponential noise. We consider the (non-convex) unregularized empirical risk minimization problem and show that early-stopped mirror descent, when equipped with the hyperbolic entropy mirror map and proper initialization, achieves a nearly minimax-optimal rate of convergence, provided the sample size is at least of order $k^2$ (modulo logarithmic term) and the minimum (in modulus) non-zero entry of the signal is on the order of $|mathbf{x}^star|_2/sqrt{k}$. Our theory leads to a simple algorithm that does not rely on explicit regularization or thresholding steps to promote sparsity. More generally, our results establish a connection between mirror descent and sparsity in the non-convex problem of noisy sparse phase retrieval, adding to the literature on early stopping that has mostly focused on non-sparse, Euclidean, and convex settings via gradient descent. Our proof combines a potential-based analysis of mirror descent with a quantitative control on a variational coherence property that we establish along the path of mirror descent, up to a prescribed stopping time.
149 - Fan Wu , Patrick Rebeschini 2020
We consider the problem of reconstructing an $n$-dimensional $k$-sparse signal from a set of noiseless magnitude-only measurements. Formulating the problem as an unregularized empirical risk minimization task, we study the sample complexity performance of gradient descent with Hadamard parametrization, which we call Hadamard Wirtinger flow (HWF). Provided knowledge of the signal sparsity $k$, we prove that a single step of HWF is able to recover the support from $k(x^*_{max})^{-2}$ (modulo logarithmic term) samples, where $x^*_{max}$ is the largest component of the signal in magnitude. This support recovery procedure can be used to initialize existing reconstruction methods and yields algorithms with total runtime proportional to the cost of reading the data and improved sample complexity, which is linear in $k$ when the signal contains at least one large component. We numerically investigate the performance of HWF at convergence and show that, while not requiring any explicit form of regularization nor knowledge of $k$, HWF adapts to the signal sparsity and reconstructs sparse signals with fewer measurements than existing gradient based methods.
Recently there has been a surge of interest in understanding implicit regularization properties of iterative gradient-based optimization algorithms. In this paper, we study the statistical guarantees on the excess risk achieved by early-stopped unconstrained mirror descent algorithms applied to the unregularized empirical risk with the squared loss for linear models and kernel methods. By completing an inequality that characterizes convexity for the squared loss, we identify an intrinsic link between offset Rademacher complexities and potential-based convergence analysis of mirror descent methods. Our observation immediately yields excess risk guarantees for the path traced by the iterates of mirror descent in terms of offset complexities of certain function classes depending only on the choice of the mirror map, initialization point, step-size, and the number of iterations. We apply our theory to recover, in a clean and elegant manner via rather short proofs, some of the recent results in the implicit regularization literature, while also showing how to improve upon them in some settings.
116 - Fan Wu , Patrick Rebeschini 2021
We study discrete-time mirror descent applied to the unregularized empirical risk in matrix sensing. In both the general case of rectangular matrices and the particular case of positive semidefinite matrices, a simple potential-based analysis in terms of the Bregman divergence allows us to establish convergence of mirror descent -- with different choices of the mirror maps -- to a matrix that, among all global minimizers of the empirical risk, minimizes a quantity explicitly related to the nuclear norm, the Frobenius norm, and the von Neumann entropy. In both cases, this characterization implies that mirror descent, a first-order algorithm minimizing the unregularized empirical risk, recovers low-rank matrices under the same set of assumptions that are sufficient to guarantee recovery for nuclear-norm minimization. When the sensing matrices are symmetric and commute, we show that gradient descent with full-rank factorized parametrization is a first-order approximation to mirror descent, in which case we obtain an explicit characterization of the implicit bias of gradient flow as a by-product.
87 - Tor Lattimore , Botao Hao 2021
We study a bandit version of phase retrieval where the learner chooses actions $(A_t)_{t=1}^n$ in the $d$-dimensional unit ball and the expected reward is $langle A_t, theta_starrangle^2$ where $theta_star in mathbb R^d$ is an unknown parameter vector. We prove that the minimax cumulative regret in this problem is $smash{tilde Theta(d sqrt{n})}$, which improves on the best known bounds by a factor of $smash{sqrt{d}}$. We also show that the minimax simple regret is $smash{tilde Theta(d / sqrt{n})}$ and that this is only achievable by an adaptive algorithm. Our analysis shows that an apparently convincing heuristic for guessing lower bounds can be misleading and that uniform bounds on the information ratio for information-directed sampling are not sufficient for optimal regret.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا