No Arabic abstract
Hot cavity resonant ionization laser ion sources (RILIS) provide a multitude of radioactive ion beams with high ionization efficiency and element selective ionization. However, in hot cavity RILIS there still remains isobaric contaminations in the extracted beam from surface ionized species. An ion guide-laser ion source (IG-LIS) has been implemented that decouples the hot isotope production region from the laser ionization volume. A number of IG-LIS runs have been conducted to provide isobar free radioactive ion beams for experiments. Isobar suppression of up to 106 has been achieved, however, IG-LIS still suffers from an intensity loss of 50-100X as compared to hot cavity RILIS. Operating parameters for IG-LIS are being optimized and design improvements are being implemented into the prototype for robust and efficient on-line operation. Recent SIMION ion optics simulation results and the ongoing development status of the IG-LIS are presented.
A system of two microchannel-plate detectors has been successfully implemented for tracking projectile-fragmentation beams. The detectors provide interaction positions, angles, and arrival times of ions at the reaction target. The current design is an adaptation of an assembly used for low-energy beams ($sim$1.4 MeV/nucleon). In order to improve resolution in tracking high-energy heavy-ion beams, the magnetic field strength between the secondary-electron accelerating foil and the microchannel plate had to be increased substantially. Results from an experiment using a 37-MeV/nucleon ${}^{56}$Ni beam show that the tracking system can achieve sub-nanosecond timing resolution and a position resolution of $sim$1 mm for beam intensities up to $5times10^{5}$ pps.
We report on experimental studies of divergence of proton beams from nanometer thick diamond-like carbon (DLC) foils irradiated by an intense laser with high contrast. Proton beams with extremely small divergence (half angle) of 2 degree are observed in addition with a remarkably well-collimated feature over the whole energy range, showing one order of magnitude reduction of the divergence angle in comparison to the results from micrometer thick targets. We demonstrate that this reduction arises from a steep longitudinal electron density gradient and an exponentially decaying transverse profile at the rear side of the ultrathin foils. Agreements are found both in an analytical model and in particle-in-cell simulations. Those novel features make nm foils an attractive alternative for high flux experiments relevant for fundamental research in nuclear and warm dense matter physics.
The degree of freedom of spin in quantum systems serves as an unparalleled laboratory where intriguing quantum physical properties can be observed, and the ability to control spin is a powerful tool in physics research. We propose a novel method for
A laser ablation ion source (LAS) is a powerful tool by which diverse species of ions can be produced for mass spectrometer calibration, or surface study applications. It is necessary to frequently shift the laser position on the target to selectively ablate materials in a controlled manner, and to mitigate degradation of the target surface caused by ablation. An alternative to mounting the target onto a rotation wheel or $x-y$ translation stage, is to shift the laser position with a final reflection from a motorized kinematic mirror mount. Such a system has been developed, assembled and characterized with a two axis motorized mirror and various metal targets. In the system presented here, ions are ablated from the target surface and guided by a 90 degree quadrupole bender to a Faraday cup where the ion current is measured. Spatially resolved scans of the target are produced by actuating the mirror motors, thus moving the laser spot across the target, and performing synchronous measurements of the ion current to construct 2D images of a target surface which can be up to 50~mm in diameter. The spatial resolution of the system has been measured by scanning the interfaces between metals such as steel and niobium, where it was demonstrated that the LAS can selectively ablate an area of diameter $approx$50 $mu$m. This work informs the development of subsequent LAS systems, that are intended to serve as multi-element ion sources for commercial and custom-built time-of-flight mass spectrometers, or to selectively study surface specific regions of samples.
The HypHI collaboration aims to perform a precise hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams at GSI and fAIR in order to study hypernuclei at extreme isospin, especially neutron rich hypernuclei to look insight hyperon-nucleon interactions in the neutron rich medium, and hypernuclear magnetic moments to investigate baryon properties in the nuclei. We are currently preparing for the first experiment with $^6$Li and $^{12}$C beams at 2 AGeV to demonstrate the feasibility of a precise hypernuclear spectroscopy by identifying $^{3}_{Lambda}$H, $^{4}_{Lambda}$H and $^{5}_{Lambda}$He. The first physics experiment on these hypernuclei is planned for 2009. In the present document, an overview of the HypHI project and the details of this first experiment will be discussed.