Do you want to publish a course? Click here

A Critical Look at the Applicability of Markov Logic Networks for Music Signal Analysis

58   0   0.0 ( 0 )
 Added by Johan Pauwels
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In recent years, Markov logic networks (MLNs) have been proposed as a potentially useful paradigm for music signal analysis. Because all hidden Markov models can be reformulated as MLNs, the latter can provide an all-encompassing framework that reuses and extends previous work in the field. However, just because it is theoretically possible to reformulate previous work as MLNs, does not mean that it is advantageous. In this paper, we analyse some proposed examples of MLNs for musical analysis and consider their practical disadvantages when compared to formulating the same musical dependence relationships as (dynamic) Bayesian networks. We argue that a number of practical hurdles such as the lack of support for sequences and for arbitrary continuous probability distributions make MLNs less than ideal for the proposed musical applications, both in terms of easy of formulation and computational requirements due to their required inference algorithms. These conclusions are not specific to music, but apply to other fields as well, especially when sequential data with continuous observations is involved. Finally, we show that the ideas underlying the proposed examples can be expressed perfectly well in the more commonly used framework of (dynamic) Bayesian networks.



rate research

Read More

Our goal is to answer elementary-level science questions using knowledge extracted automatically from science textbooks, expressed in a subset of first-order logic. Given the incomplete and noisy nature of these automatically extracted rules, Markov Logic Networks (MLNs) seem a natural model to use, but the exact way of leveraging MLNs is by no means obvious. We investigate three ways of applying MLNs to our task. In the first, we simply use the extracted science rules directly as MLN clauses. Unlike typical MLN applications, our domain has long and complex rules, leading to an unmanageable number of groundings. We exploit the structure present in hard constraints to improve tractability, but the formulation remains ineffective. In the second approach, we instead interpret science rules as describing prototypical entities, thus mapping rules directly to grounded MLN assertions, whose constants are then clustered using existing entity resolution methods. This drastically simplifies the network, but still suffers from brittleness. Finally, our third approach, called Praline, uses MLNs to align the lexical elements as well as define and control how inference should be performed in this task. Our experiments, demonstrating a 15% accuracy boost and a 10x reduction in runtime, suggest that the flexibility and different inference semantics of Praline are a better fit for the natural language question answering task.
The assessment of music performances in most cases takes into account the underlying musical score being performed. While there have been several automatic approaches for objective music performance assessment (MPA) based on extracted features from both the performance audio and the score, deep neural network-based methods incorporating score information into MPA models have not yet been investigated. In this paper, we introduce three different models capable of score-informed performance assessment. These are (i) a convolutional neural network that utilizes a simple time-series input comprising of aligned pitch contours and score, (ii) a joint embedding model which learns a joint latent space for pitch contours and scores, and (iii) a distance matrix-based convolutional neural network which utilizes patterns in the distance matrix between pitch contours and musical score to predict assessment ratings. Our results provide insights into the suitability of different architectures and input representations and demonstrate the benefits of score-informed models as compared to score-independent models.
79 - Zhe Xu , Agung Julius 2016
In this paper, we define a novel census signal temporal logic (CensusSTL) that focuses on the number of agents in different subsets of a group that complete a certain task specified by the signal temporal logic (STL). CensusSTL consists of an inner logic STL formula and an outer logic STL formula. We present a new inference algorithm to infer CensusSTL formulae from the trajectory data of a group of agents. We first identify the inner logic STL formula and then infer the subgroups based on whether the agents behaviors satisfy the inner logic formula at each time point. We use two different approaches to infer the subgroups based on similarity and complementarity, respectively. The outer logic CensusSTL formula is inferred from the census trajectories of different subgroups. We apply the algorithm in analyzing data from a soccer match by inferring the CensusSTL formula for different subgroups of a soccer team.
Extracting spatial-temporal knowledge from data is useful in many applications. It is important that the obtained knowledge is human-interpretable and amenable to formal analysis. In this paper, we propose a method that trains neural networks to learn spatial-temporal properties in the form of weighted graph-based signal temporal logic (wGSTL) formulas. For learning wGSTL formulas, we introduce a flexible wGSTL formula structure in which the users preference can be applied in the inferred wGSTL formulas. In the proposed framework, each neuron of the neural networks corresponds to a subformula in a flexible wGSTL formula structure. We initially train a neural network to learn the wGSTL operators and then train a second neural network to learn the parameters in a flexible wGSTL formula structure. We use a COVID-19 dataset and a rain prediction dataset to evaluate the performance of the proposed framework and algorithms. We compare the performance of the proposed framework with three baseline classification methods including K-nearest neighbors, decision trees, and artificial neural networks. The classification accuracy obtained by the proposed framework is comparable with the baseline classification methods.
153 - Peter Li , Jiyuan Qian , Tian Wang 2015
Traditional methods to tackle many music information retrieval tasks typically follow a two-step architecture: feature engineering followed by a simple learning algorithm. In these shallow architectures, feature engineering and learning are typically disjoint and unrelated. Additionally, feature engineering is difficult, and typically depends on extensive domain expertise. In this paper, we present an application of convolutional neural networks for the task of automatic musical instrument identification. In this model, feature extraction and learning algorithms are trained together in an end-to-end fashion. We show that a convolutional neural network trained on raw audio can achieve performance surpassing traditional methods that rely on hand-crafted features.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا