Do you want to publish a course? Click here

Learning to Navigate Using Mid-Level Visual Priors

134   0   0.0 ( 0 )
 Added by Alexander Sax
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

How much does having visual priors about the world (e.g. the fact that the world is 3D) assist in learning to perform downstream motor tasks (e.g. navigating a complex environment)? What are the consequences of not utilizing such visual priors in learning? We study these questions by integrating a generic perceptual skill set (a distance estimator, an edge detector, etc.) within a reinforcement learning framework (see Fig. 1). This skill set (mid-level vision) provides the policy with a more processed state of the world compared to raw images. Our large-scale study demonstrates that using mid-level vision results in policies that learn faster, generalize better, and achieve higher final performance, when compared to learning from scratch and/or using state-of-the-art visual and non-visual representation learning methods. We show that conventional computer vision objectives are particularly effective in this regard and can be conveniently integrated into reinforcement learning frameworks. Finally, we found that no single visual representation was universally useful for all downstream tasks, hence we computationally derive a task-agnostic set of representations optimized to support arbitrary downstream tasks.



rate research

Read More

Learning to navigate in a realistic setting where an agent must rely solely on visual inputs is a challenging task, in part because the lack of position information makes it difficult to provide supervision during training. In this paper, we introduce a novel approach for learning to navigate from image inputs without external supervision or reward. Our approach consists of three stages: learning a good representation of first-person views, then learning to explore using memory, and finally learning to navigate by setting its own goals. The model is trained with intrinsic rewards only so that it can be applied to any environment with image observations. We show the benefits of our approach by training an agent to navigate challenging photo-realistic environments from the Gibson dataset with RGB inputs only.
We present a controller that allows an arm-like manipulator to navigate deformable cloth garments in simulation through the use of haptic information. The main challenge of such a controller is to avoid getting tangled in, tearing or punching through the deforming cloth. Our controller aggregates force information from a number of haptic-sensing spheres all along the manipulator for guidance. Based on haptic forces, each individual sphere updates its target location, and the conflicts that arise between this set of desired positions is resolved by solving an inverse kinematic problem with constraints. Reinforcement learning is used to train the controller for a single haptic-sensing sphere, where a training run is terminated (and thus penalized) when large forces are detected due to contact between the sphere and a simplified model of the cloth. In simulation, we demonstrate successful navigation of a robotic arm through a variety of garments, including an isolated sleeve, a jacket, a shirt, and shorts. Our controller out-performs two baseline controllers: one without haptics and another that was trained based on large forces between the sphere and cloth, but without early termination.
Image representations are commonly learned from class labels, which are a simplistic approximation of human image understanding. In this paper we demonstrate that transferable representations of images can be learned without manual annotations by modeling human visual attention. The basis of our analyses is a unique gaze tracking dataset of sonographers performing routine clinical fetal anomaly screenings. Models of sonographer visual attention are learned by training a convolutional neural network (CNN) to predict gaze on ultrasound video frames through visual saliency prediction or gaze-point regression. We evaluate the transferability of the learned representations to the task of ultrasound standard plane detection in two contexts. Firstly, we perform transfer learning by fine-tuning the CNN with a limited number of labeled standard plane images. We find that fine-tuning the saliency predictor is superior to training from random initialization, with an average F1-score improvement of 9.6% overall and 15.3% for the cardiac planes. Secondly, we train a simple softmax regression on the feature activations of each CNN layer in order to evaluate the representations independently of transfer learning hyper-parameters. We find that the attention models derive strong representations, approaching the precision of a fully-supervised baseline model for all but the last layer.
How much does having visual priors about the world (e.g. the fact that the world is 3D) assist in learning to perform downstream motor tasks (e.g. delivering a package)? We study this question by integrating a generic perceptual skill set (e.g. a distance estimator, an edge detector, etc.) within a reinforcement learning framework--see Figure 1. This skill set (hereafter mid-level perception) provides the policy with a more processed state of the world compared to raw images. We find that using a mid-level perception confers significant advantages over training end-to-end from scratch (i.e. not leveraging priors) in navigation-oriented tasks. Agents are able to generalize to situations where the from-scratch approach fails and training becomes significantly more sample efficient. However, we show that realizing these gains requires careful selection of the mid-level perceptual skills. Therefore, we refine our findings into an efficient max-coverage feature set that can be adopted in lieu of raw images. We perform our study in completely separate buildings for training and testing and compare against visually blind baseline policies and state-of-the-art feature learning methods.
In this work, we introduce a two-step framework for generative modeling of temporal data. Specifically, the generative adversarial networks (GANs) setting is employed to generate synthetic scenes of moving objects. To do so, we propose a two-step training scheme within which: a generator of static frames is trained first. Afterwards, a recurrent model is trained with the goal of providing a sequence of inputs to the previously trained frames generator, thus yielding scenes which look natural. The adversarial setting is employed in both training steps. However, with the aim of avoiding known training instabilities in GANs, a multiple discriminator approach is used to train both models. Results in the studied video dataset indicate that, by employing such an approach, the recurrent part is able to learn how to coherently navigate the image manifold induced by the frames generator, thus yielding more natural-looking scenes.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا