Do you want to publish a course? Click here

Parametric Sparse Bayesian Dictionary Learning for Multiple Sources Localization with Propagation Parameters Uncertainty and Nonuniform Noise

123   0   0.0 ( 0 )
 Added by Kangyong You
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Received signal strength (RSS) based source localization method is popular due to its simplicity and low cost. However, this method is highly dependent on the propagation model which is not easy to be captured in practice. Moreover, most existing works only consider the single source and the identical measurement noise scenario, while in practice multiple co-channel sources may transmit simultaneously, and the measurement noise tends to be nonuniform. In this paper, we study the multiple co-channel sources localization (MSL) problem under unknown nonuniform noise, while jointly estimating the parametric propagation model. Specifically, we model the MSL problem as being parameterized by the unknown source locations and propagation parameters, and then reformulate it as a joint parametric sparsifying dictionary learning (PSDL) and sparse signal recovery (SSR) problem which is solved under the framework of sparse Bayesian learning with iterative parametric dictionary approximation. Furthermore, multiple snapshot measurements are utilized to improve the localization accuracy, and the Cramer-Rao lower bound (CRLB) is derived to analyze the theoretical estimation error bound. Comparing with the state-of-the-art sparsity-based MSL algorithms as well as CRLB, extensive simulations show the importance of jointly inferring the propagation parameters,and highlight the effectiveness and superiority of the proposed method.



rate research

Read More

Purpose: Localizing the sources of electrical activity from electroencephalographic (EEG) data has gained considerable attention over the last few years. In this paper, we propose an innovative source localization method for EEG, based on Sparse Bayesian Learning (SBL). Methods: To better specify the sparsity profile and to ensure efficient source localization, the proposed approach considers grouping of the electrical current dipoles inside human brain. SBL is used to solve the localization problem in addition with imposed constraint that the electric current dipoles associated with the brain activity are isotropic. Results: Numerical experiments are conducted on a realistic head model that is obtained by segmentation of MRI images of the head and includes four major components, namely the scalp, the skull, the cerebrospinal fluid (CSF) and the brain, with appropriate relative conductivity values. The results demonstrate that the isotropy constraint significantly improves the performance of SBL. In a noiseless environment, the proposed method was 1 found to accurately (with accuracy of >75%) locate up to 6 simultaneously active sources, whereas for SBL without the isotropy constraint, the accuracy of finding just 3 simultaneously active sources was <75%. Conclusions: Compared to the state-of-the-art algorithms, the proposed method is potentially more consistent in specifying the sparsity profile of human brain activity and is able to produce better source localization for EEG.
Sparse Bayesian learning (SBL) is a powerful framework for tackling the sparse coding problem while also providing uncertainty quantification. However, the most popular inference algorithms for SBL become too expensive for high-dimensional problems due to the need to maintain a large covariance matrix. To resolve this issue, we introduce a new SBL inference algorithm that avoids explicit computation of the covariance matrix, thereby saving significant time and space. Instead of performing costly matrix
78 - Jisheng Dai , An Liu , 2019
This study addresses the problem of discrete signal reconstruction from the perspective of sparse Bayesian learning (SBL). Generally, it is intractable to perform the Bayesian inference with the ideal discretization prior under the SBL framework. To overcome this challenge, we introduce a novel discretization enforcing prior to exploit the knowledge of the discrete nature of the signal-of-interest. By integrating the discretization enforcing prior into the SBL framework and applying the variational Bayesian inference (VBI) methodology, we devise an alternating update algorithm to jointly characterize the finite alphabet feature and reconstruct the unknown signal. When the measurement matrix is i.i.d. Gaussian per component, we further embed the generalized approximate message passing (GAMP) into the VBI-based method, so as to directly adopt the ideal prior and significantly reduce the computational burden. Simulation results demonstrate substantial performance improvement of the two proposed methods over existing schemes. Moreover, the GAMP-based variant outperforms the VBI-based method with an i.i.d. Gaussian measurement matrix but it fails to work for non i.i.d. Gaussian matrices.
178 - Man Luo , Qinghua Guo , Ming Jin 2021
Sparse Bayesian learning (SBL) can be implemented with low complexity based on the approximate message passing (AMP) algorithm. However, it does not work well for a generic measurement matrix, which may cause AMP to diverge. Damped AMP has been used for SBL to alleviate the problem at the cost of reducing convergence speed. In this work, we propose a new SBL algorithm based on structured variational inference, leveraging AMP with a unitary transformation (UAMP). Both single measurement vector and multiple measurement vector problems are investigated. It is shown that, compared to state-of-the-art AMP-based SBL algorithms, the proposed UAMP-SBL is more robust and efficient, leading to remarkably better performance.
Localization based on received signal strength (RSS) has drawn great interest in the wireless sensor network (WSN). In this paper, we investigate the RSS-based multi-sources localization problem with unknown transmitted power under shadow fading. The log-normal shadowing effect is approximated through Fenton-Wilkinson (F-W) method and maximum likelihood estimation is adopted to optimize the RSS-based multiple sources localization problem. Moreover, we exploit a sparse recovery and weighted average of candidates (SR-WAC) based method to set up an initiation, which can efficiently approach a superior local optimal solution. It is shown from the simulation results that the proposed method has a much higher localization accuracy and outperforms the other
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا