No Arabic abstract
Purpose: Localizing the sources of electrical activity from electroencephalographic (EEG) data has gained considerable attention over the last few years. In this paper, we propose an innovative source localization method for EEG, based on Sparse Bayesian Learning (SBL). Methods: To better specify the sparsity profile and to ensure efficient source localization, the proposed approach considers grouping of the electrical current dipoles inside human brain. SBL is used to solve the localization problem in addition with imposed constraint that the electric current dipoles associated with the brain activity are isotropic. Results: Numerical experiments are conducted on a realistic head model that is obtained by segmentation of MRI images of the head and includes four major components, namely the scalp, the skull, the cerebrospinal fluid (CSF) and the brain, with appropriate relative conductivity values. The results demonstrate that the isotropy constraint significantly improves the performance of SBL. In a noiseless environment, the proposed method was 1 found to accurately (with accuracy of >75%) locate up to 6 simultaneously active sources, whereas for SBL without the isotropy constraint, the accuracy of finding just 3 simultaneously active sources was <75%. Conclusions: Compared to the state-of-the-art algorithms, the proposed method is potentially more consistent in specifying the sparsity profile of human brain activity and is able to produce better source localization for EEG.
Localizing the sources of electrical activity in the brain from Electroencephalographic (EEG) data is an important tool for non-invasive study of brain dynamics. Generally, the source localization process involves a high-dimensional inverse problem that has an infinite number of solutions and thus requires additional constraints to be considered to have a unique solution. In the context of EEG source localization, we propose a novel approach that is based on dividing the cerebral cortex of the brain into a finite number of Functional Zones which correspond to unitary functional areas in the brain. In this paper we investigate the use of Brodmanns areas as the Functional Zones. This approach allows us to apply a sparsity constraint to find a unique solution for the inverse EEG problem. Compared to previously published algorithms which use different sparsity constraints to solve this problem, the proposed method is potentially more consistent with the known sparsity profile of the human brain activity and thus may be able to ensure better localization. Numerical experiments are conducted on a realistic head model obtained from segmentation of MRI images of the head and includes four major compartments namely scalp, skull, cerebrospinal fluid (CSF) and brain with relative conductivity values. Three different electrode setups are tested in the numerical experiments.
EEG source localization is an important technical issue in EEG analysis. Despite many numerical methods existed for EEG source localization, they all rely on strong priors and the deep sources are intractable. Here we propose a deep learning framework using spatial basis function decomposition for EEG source localization. This framework combines the edge sparsity prior and Gaussian source basis, called Edge Sparse Basis Network (ESBN). The performance of ESBN is validated by both synthetic data and real EEG data during motor tasks. The results suggest that the supervised ESBN outperforms the traditional numerical methods in synthetic data and the unsupervised fine-tuning provides more focal and accurate localizations in real data. Our proposed deep learning framework can be extended to account for other source priors, and the real-time property of ESBN can facilitate the applications of EEG in brain-computer interfaces and clinics.
We present an automated method to track and identify neurons in C. elegans, called fast Deep Learning Correspondence or fDLC, based on the transformer network architecture. The model is trained once on empirically derived synthetic data and then predicts neural correspondence across held-out real animals via transfer learning. The same pre-trained model both tracks neurons across time and identifies corresponding neurons across individuals. Performance is evaluated against hand-annotated datasets, including NeuroPAL [1]. Using only position information, the method achieves 80.0% accuracy at tracking neurons within an individual and 65.8% accuracy at identifying neurons across individuals. Accuracy is even higher on a published dataset [2]. Accuracy reaches 76.5% when using color information from NeuroPAL. Unlike previous methods, fDLC does not require straightening or transforming the animal into a canonical coordinate system. The method is fast and predicts correspondence in 10 ms making it suitable for future real-time applications.
Machine-learning models that learn from data to predict how protein sequence encodes function are emerging as a useful protein engineering tool. However, when using these models to suggest new protein designs, one must deal with the vast combinatorial complexity of protein sequences. Here, we review how to use a sequence-to-function machine-learning surrogate model to select sequences for experimental measurement. First, we discuss how to select sequences through a single round of machine-learning optimization. Then, we discuss sequential optimization, where the goal is to discover optimized sequences and improve the model across multiple rounds of training, optimization, and experimental measurement.
Simultaneous EEG-fMRI is a multi-modal neuroimaging technique that provides complementary spatial and temporal resolution for inferring a latent source space of neural activity. In this paper we address this inference problem within the framework of transcoding -- mapping from a specific encoding (modality) to a decoding (the latent source space) and then encoding the latent source space to the other modality. Specifically, we develop a symmetric method consisting of a cyclic convolutional transcoder that transcodes EEG to fMRI and vice versa. Without any prior knowledge of either the hemodynamic response function or lead field matrix, the method exploits the temporal and spatial relationships between the modalities and latent source spaces to learn these mappings. We show, for real EEG-fMRI data, how well the modalities can be transcoded from one to another as well as the source spaces that are recovered, all on unseen data. In addition to enabling a new way to symmetrically infer a latent source space, the method can also be seen as low-cost computational neuroimaging -- i.e. generating an expensive fMRI BOLD image from low cost EEG data.