Do you want to publish a course? Click here

Interactive Classification by Asking Informative Questions

156   0   0.0 ( 0 )
 Added by Lili Yu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We study the potential for interaction in natural language classification. We add a limited form of interaction for intent classification, where users provide an initial query using natural language, and the system asks for additional information using binary or multi-choice questions. At each turn, our system decides between asking the most informative question or making the final classification prediction.The simplicity of the model allows for bootstrapping of the system without interaction data, instead relying on simple crowdsourcing tasks. We evaluate our approach on two domains, showing the benefit of interaction and the advantage of learning to balance between asking additional questions and making the final prediction.



rate research

Read More

In this paper, we propose QACE, a new metric based on Question Answering for Caption Evaluation. QACE generates questions on the evaluated caption and checks its content by asking the questions on either the reference caption or the source image. We first develop QACE-Ref that compares the answers of the evaluated caption to its reference, and report competitive results with the state-of-the-art metrics. To go further, we propose QACE-Img, which asks the questions directly on the image, instead of reference. A Visual-QA system is necessary for QACE-Img. Unfortunately, the standard VQA models are framed as a classification among only a few thousand categories. Instead, we propose Visual-T5, an abstractive VQA system. The resulting metric, QACE-Img is multi-modal, reference-less, and explainable. Our experiments show that QACE-Img compares favorably w.r.t. other reference-less metrics. We will release the pre-trained models to compute QACE.
Asking questions about a situation is an inherent step towards understanding it. To this end, we introduce the task of role question generation, which, given a predicate mention and a passage, requires producing a set of questions asking about all possible semantic roles of the predicate. We develop a two-stage model for this task, which first produces a context-independent question prototype for each role and then revises it to be contextually appropriate for the passage. Unlike most existing approaches to question generation, our approach does not require conditioning on existing answers in the text. Instead, we condition on the type of information to inquire about, regardless of whether the answer appears explicitly in the text, could be inferred from it, or should be sought elsewhere. Our evaluation demonstrates that we generate diverse and well-formed questions for a large, broad-coverage ontology of predicates and roles.
This paper introduces QAConv, a new question answering (QA) dataset that uses conversations as a knowledge source. We focus on informative conversations including business emails, panel discussions, and work channels. Unlike open-domain and task-oriented dialogues, these conversations are usually long, complex, asynchronous, and involve strong domain knowledge. In total, we collect 34,204 QA pairs, including span-based, free-form, and unanswerable questions, from 10,259 selected conversations with both human-written and machine-generated questions. We segment long conversations into chunks, and use a question generator and dialogue summarizer as auxiliary tools to collect multi-hop questions. The dataset has two testing scenarios, chunk mode and full mode, depending on whether the grounded chunk is provided or retrieved from a large conversational pool. Experimental results show that state-of-the-art QA systems trained on existing QA datasets have limited zero-shot ability and tend to predict our questions as unanswerable. Fine-tuning such systems on our corpus can achieve significant improvement up to 23.6% and 13.6% in both chunk mode and full mode, respectively.
Routing questions in Community Question Answer services (CQAs) such as Stack Exchange sites is a well-studied problem. Yet, cold-start -- a phenomena observed when a new question is posted is not well addressed by existing approaches. Additionally, cold questions posted by new askers present significant challenges to state-of-the-art approaches. We propose ColdRoute to address these challenges. ColdRoute is able to handle the task of routing cold questions posted by new or existing askers to matching experts. Specifically, we use Factorization Machines on the one-hot encoding of critical features such as question tags and compare our approach to well-studied techniques such as CQARank and semantic matching (LDA, BoW, and Doc2Vec). Using data from eight stack exchange sites, we are able to improve upon the routing metrics (Precision$@1$, Accuracy, MRR) over the state-of-the-art models such as semantic matching by $159.5%$,$31.84%$, and $40.36%$ for cold questions posted by existing askers, and $123.1%$, $27.03%$, and $34.81%$ for cold questions posted by new askers respectively.
184 - Fanyi Qu , Xin Jia , Yunfang Wu 2021
Generating high quality question-answer pairs is a hard but meaningful task. Although previous works have achieved great results on answer-aware question generation, it is difficult to apply them into practical application in the education field. This paper for the first time addresses the question-answer pair generation task on the real-world examination data, and proposes a new unified framework on RACE. To capture the important information of the input passage we first automatically generate(rather than extracting) keyphrases, thus this task is reduced to keyphrase-question-answer triplet joint generation. Accordingly, we propose a multi-agent communication model to generate and optimize the question and keyphrases iteratively, and then apply the generated question and keyphrases to guide the generation of answers. To establish a solid benchmark, we build our model on the strong generative pre-training model. Experimental results show that our model makes great breakthroughs in the question-answer pair generation task. Moreover, we make a comprehensive analysis on our model, suggesting new directions for this challenging task.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا