No Arabic abstract
Based on the geometry of the codimension-2 surface in a general spherically symmetric spacetime, we give a quasi-local definition of a photon sphere as well as a photon surface. This new definition is the generalization of the one by Claudel, Virbhadra, and Ellis but without reference to any umbilical hypersurface in the spacetime. The new definition effectively rules out the photon surface which has noting to do with gravity. The application of the definition to the Lemaitre-Tolman-Bondi (LTB) model of gravitational collapse reduces to a problem of a second order differential equation. We find that the energy balance on the boundary of the dust ball can provide one appropriate boundary condition to this equation. Based on this key investigation, we find an analytic photon surface solution in the Oppenheimer-Snyder (OS) model and reasonable numerical solutions for the marginally bounded collapse in the LTB model. Interestingly, in the OS model, we find that the time difference between the occurrence of the photon surface and the event horizon is mainly determined by the total mass of the system but not the size or the strength of gravitational field of the system.
We examine potential deformations of inner black hole and cosmological horizons in Reissner-Nordstrom de-Sitter spacetimes. While the rigidity of the outer black hole horizon is guaranteed by theorem, that theorem applies to neither the inner black hole nor past cosmological horizon. Further for pure deSitter spacetime it is clear that the cosmological horizon can be deformed (by translation). For specific parameter choices, it is shown that both inner black hole and cosmological horizons can be infinitesimally deformed. However these do not extend to finite deformations. The corresponding results for general spherically symmetric spacetimes are considered.
We present a framework for studying gravitational lensing in spherically symmetric spacetimes using 1+1+2 covariant methods. A general formula for the deflection angle is derived and we show how this can be used to recover the standard result for the Schwarzschild spacetime.
The existence and stability of circular orbits (CO) in static and spherically symmetric (SSS) spacetime are important because of their practical and potential usefulness. In this paper, using the fixed point method, we first prove a necessary and sufficient condition on the metric function for the existence of timelike COs in SSS spacetimes. After analyzing the asymptotic behavior of the metric, we then show that asymptotic flat SSS spacetime that corresponds to a negative Newtonian potential at large $r$ will always allow the existence of CO. The stability of the CO in a general SSS spacetime is then studied using the Lyapunov exponent method. Two sufficient conditions on the (in)stability of the COs are obtained. For null geodesics, a sufficient condition on the metric function for the (in)stability of null CO is also obtained. We then illustrate one powerful application of these results by showing that an SU(2) Yang-Mills-Einstein SSS spacetime whose metric function is not known, will allow the existence of timelike COs. We also used our results to assert the existence and (in)stabilities of a number of known SSS metrics.
We search for self tuning solutions to the Einstein-scalar field equations for the simplest class of `Fab-Four models with constant potentials. We first review the conditions under which self tuning occurs in a cosmological spacetime, and by introducing a small modification to the original theory - introducing the second and third Galileon terms - show how one can obtain de Sitter states where the expansion rate is independent of the vacuum energy. We then consider whether the same self tuning mechanism can persist in a spherically symmetric inhomogeneous spacetime. We show that there are no asymptotically flat solutions to the field equations in which the vacuum energy is screened, other than the trivial one (Minkowski space). We then consider the possibility of constructing Schwarzschild de Sitter spacetimes for the modified Fab Four plus Galileon theory. We argue that the only model that can successfully screen the vacuum energy in both an FLRW and Schwarzschild de Sitter spacetime is one containing `John $sim G^{mu}{}_{ u} partial_{mu}phipartial^{ u}phi$ and a canonical kinetic term $sim partial_{alpha}phi partial^{alpha}phi$. This behaviour was first observed in (Babichev&Charmousis,2013). The screening mechanism, which requires redundancy of the scalar field equation in the `vacuum, fails for the `Paul term in an inhomogeneous spacetime.
The thermodynamic properties of a shell of bosons with the inner surface locating at Planck length away from the horizon of Schwarzschild black holes by using statistical mechanics are studied. The covariant partition function of bosons is obtained, from which the Bose-Einstein condensation of bosons is found at a non-zero temperature in the curved spacetimes. As a special case of bosons, we analyze the entropy of photon gas near the horizon of the Schwarzschild black hole, which shows an area dependence similar to the Bekenstein-Hawking entropy. The results may offer new perspectives on the study of black hole thermodynamics. All these are extended to the $D+1$ dimensional spherically symmetric static spacetimes.