Do you want to publish a course? Click here

Self Tuning Scalar Fields in Spherically Symmetric Spacetimes

140   0   0.0 ( 0 )
 Added by Stephen Appleby
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We search for self tuning solutions to the Einstein-scalar field equations for the simplest class of `Fab-Four models with constant potentials. We first review the conditions under which self tuning occurs in a cosmological spacetime, and by introducing a small modification to the original theory - introducing the second and third Galileon terms - show how one can obtain de Sitter states where the expansion rate is independent of the vacuum energy. We then consider whether the same self tuning mechanism can persist in a spherically symmetric inhomogeneous spacetime. We show that there are no asymptotically flat solutions to the field equations in which the vacuum energy is screened, other than the trivial one (Minkowski space). We then consider the possibility of constructing Schwarzschild de Sitter spacetimes for the modified Fab Four plus Galileon theory. We argue that the only model that can successfully screen the vacuum energy in both an FLRW and Schwarzschild de Sitter spacetime is one containing `John $sim G^{mu}{}_{ u} partial_{mu}phipartial^{ u}phi$ and a canonical kinetic term $sim partial_{alpha}phi partial^{alpha}phi$. This behaviour was first observed in (Babichev&Charmousis,2013). The screening mechanism, which requires redundancy of the scalar field equation in the `vacuum, fails for the `Paul term in an inhomogeneous spacetime.



rate research

Read More

We present a framework for studying gravitational lensing in spherically symmetric spacetimes using 1+1+2 covariant methods. A general formula for the deflection angle is derived and we show how this can be used to recover the standard result for the Schwarzschild spacetime.
We studied spherically symmetric solutions in scalar-torsion gravity theories in which a scalar field is coupled to torsion with a derivative coupling. We obtained the general field equations from which we extracted a decoupled master equation, the solution of which leads to the specification of all other unknown functions. We first obtained an exact solution which represents a new wormhole-like solution dressed with a regular scalar field. Then, we found large distance linearized spherically symmetric solutions in which the space asymptotically is AdS.
We investigate the dynamical behavior of a scalar field non-minimally coupled to Einsteins tensor and Ricci scalar in geometries of asymptotically de Sitter spacetimes. We show that the quasinormal modes remain unaffected if the scalar field is massless and the black hole is electrically chargeless. In the massive case, the coupling of both parameters produces a region of instability in the spacetime determined by the geometry and field parameters. In the Schwarzschild case, every solution for the equations of motion with $ell>0$ has a range of values of the coupling constant that produces unstable modes. The case $ell=0$ is the most unstable one, with a threshold value for stability in the coupling. For the charged black hole, the existence of a range of instability in $eta$ is strongly related to geometry parameters presenting a region of stability independent of the chosen parameter.
68 - Duo Li , Bin Wu , Zhen-Ming Xu 2021
The thermodynamic properties of a shell of bosons with the inner surface locating at Planck length away from the horizon of Schwarzschild black holes by using statistical mechanics are studied. The covariant partition function of bosons is obtained, from which the Bose-Einstein condensation of bosons is found at a non-zero temperature in the curved spacetimes. As a special case of bosons, we analyze the entropy of photon gas near the horizon of the Schwarzschild black hole, which shows an area dependence similar to the Bekenstein-Hawking entropy. The results may offer new perspectives on the study of black hole thermodynamics. All these are extended to the $D+1$ dimensional spherically symmetric static spacetimes.
148 - Li-Ming Cao , Yong Song 2019
Based on the geometry of the codimension-2 surface in a general spherically symmetric spacetime, we give a quasi-local definition of a photon sphere as well as a photon surface. This new definition is the generalization of the one by Claudel, Virbhadra, and Ellis but without reference to any umbilical hypersurface in the spacetime. The new definition effectively rules out the photon surface which has noting to do with gravity. The application of the definition to the Lemaitre-Tolman-Bondi (LTB) model of gravitational collapse reduces to a problem of a second order differential equation. We find that the energy balance on the boundary of the dust ball can provide one appropriate boundary condition to this equation. Based on this key investigation, we find an analytic photon surface solution in the Oppenheimer-Snyder (OS) model and reasonable numerical solutions for the marginally bounded collapse in the LTB model. Interestingly, in the OS model, we find that the time difference between the occurrence of the photon surface and the event horizon is mainly determined by the total mass of the system but not the size or the strength of gravitational field of the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا