No Arabic abstract
Rotation of a container holding a viscous fluid forms a vortex which grows with increasing angular velocity. A superfluid, however, is intrinsically different from these normal fluids because its rotation is quantized. Even if a container of superfluid is rotating, the fluid itself remains still until a critical velocity is reached. Beyond the critical velocity, all the particles conspire to suddenly pick up an angular momentum of $hbar$ each and forms a quantized vortex. As a result, a superfluid is known to increase its rotation by a total angular momentum of $Nhbar$. In this letter, we show that exciton-polariton superfluid can split into an irrotational part and a rotational part. The relative ratio between the two states can be controlled by either pump beams power or spot size. Consequently, angular momentum of exciton-polariton superfluid can be tuned from zero to $Nhbar$ continuously. This striking observation sets the stage for studying non-equilibrium properties of a superfluid with exciton-polaritons.
The property of superfluidity, first discovered in liquid 4He, is closely related to Bose-Einstein condensation (BEC) of interacting bosons. However, even at zero temperature, when one would expect the whole bosonic quantum liquid to become condensed, a fraction of it is excited into higher momentum states via interparticle interactions and quantum fluctuations -- the phenomenon of quantum depletion. Quantum depletion of weakly interacting atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This is even more challenging in driven-dissipative systems such as exciton-polariton condensates(photons coupled to electron-hole pairs in a semiconductor), since their nonequilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of an optically trapped high-density exciton-polariton condensate by directly detecting the spectral branch of elementary excitations populated by this process. Analysis of the population of this branch in momentum space shows that quantum depletion of an exciton-polariton condensate can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the fraction of matter (exciton) in an exciton-polariton. Our results reveal the effects of exciton-polariton interactions beyond the mean-field description and call for a deeper understanding of the relationship between equilibrium and nonequilibrium BECs.
Singly quantized vortices have been already observed in many systems including the superfluid helium, Bose Einstein condensates of dilute atomic gases, and condensates of exciton polaritons in the solid state. Two dimensional superfluids carrying spin are expected to demonstrate a different type of elementary excitations referred to as half quantum vortices characterized by a pi rotation of the phase and a pi rotation of the polarization vector when circumventing the vortex core. We detect half quantum vortices in an exciton-polariton condensate by means of polarization resolved interferometry, real space spectroscopy and phase imaging. Half quantum vortices coexist with single quantum vortices in our sample.
Recently a new type of system exhibiting spontaneous coherence has emerged -- the exciton-polariton condensate. Exciton-polaritons (or polaritons for short) are bosonic quasiparticles that exist inside semiconductor microcavities, consisting of a superposition of an exciton and a cavity photon. Above a threshold density the polaritons macroscopically occupy the same quantum state, forming a condensate. The lifetime of the polaritons are typically comparable to or shorter than thermalization times, making them possess an inherently non-equilibrium nature. Nevertheless, they display many of the features that would be expected of equilibrium Bose-Einstein condensates (BECs). The non-equilibrium nature of the system raises fundamental questions of what it means for a system to be a BEC, and introduces new physics beyond that seen in other macroscopically coherent systems. In this review we focus upon several physical phenomena exhibited by exciton-polariton condensates. In particular we examine topics such as the difference between a polariton BEC, a polariton laser, and a photon laser, as well as physical phenomena such as superfluidity, vortex formation, BKT (Berezinskii-Kosterlitz-Thouless) and BCS (Bardeen-Cooper-Schrieffer) physics. We also discuss the physics and applications of engineered polariton structures.
Measurement techniques based upon the Hall effect are invaluable tools in condensed matter physics. When an electric current flows perpendicular to a magnetic field, a Hall voltage develops in the direction transverse to both the current and the field. In semiconductors, this behaviour is routinely used to measure the density and charge of the current carriers (electrons in conduction bands or holes in valence bands) -- internal properties of the system that are not accessible from measurements of the conventional resistance. For strongly interacting electron systems, whose behaviour can be very different from the free electron gas, the Hall effects sensitivity to internal properties makes it a powerful tool; indeed, the quantum Hall effects are named after the tool by which they are most distinctly measured instead of the physics from which the phenomena originate. Here we report the first observation of a Hall effect in an ultracold gas of neutral atoms, revealed by measuring a Bose-Einstein condensates transport properties perpendicular to a synthetic magnetic field. Our observations in this vortex-free superfluid are in good agreement with hydrodynamic predictions, demonstrating that the systems global irrotationality influences this superfluid Hall signal.
A quantum simulator is a purposeful quantum machine that can address complex quantum problems in a controllable setting and an efficient manner. This chapter introduces a solid-state quantum simulator platform based on exciton-polaritons, which are hybrid light-matter quantum quasi-particles. We describe the physical realization of an exciton-polariton quantum simulator in semiconductor materials (hardware) and discuss a class of problems, which the exciton-polariton quantum simulators can address well (software). A current status of the experimental progress in building the quantum machine is reviewed, and potential applications are considered.