No Arabic abstract
A quantum simulator is a purposeful quantum machine that can address complex quantum problems in a controllable setting and an efficient manner. This chapter introduces a solid-state quantum simulator platform based on exciton-polaritons, which are hybrid light-matter quantum quasi-particles. We describe the physical realization of an exciton-polariton quantum simulator in semiconductor materials (hardware) and discuss a class of problems, which the exciton-polariton quantum simulators can address well (software). A current status of the experimental progress in building the quantum machine is reviewed, and potential applications are considered.
Recently a new type of system exhibiting spontaneous coherence has emerged -- the exciton-polariton condensate. Exciton-polaritons (or polaritons for short) are bosonic quasiparticles that exist inside semiconductor microcavities, consisting of a superposition of an exciton and a cavity photon. Above a threshold density the polaritons macroscopically occupy the same quantum state, forming a condensate. The lifetime of the polaritons are typically comparable to or shorter than thermalization times, making them possess an inherently non-equilibrium nature. Nevertheless, they display many of the features that would be expected of equilibrium Bose-Einstein condensates (BECs). The non-equilibrium nature of the system raises fundamental questions of what it means for a system to be a BEC, and introduces new physics beyond that seen in other macroscopically coherent systems. In this review we focus upon several physical phenomena exhibited by exciton-polariton condensates. In particular we examine topics such as the difference between a polariton BEC, a polariton laser, and a photon laser, as well as physical phenomena such as superfluidity, vortex formation, BKT (Berezinskii-Kosterlitz-Thouless) and BCS (Bardeen-Cooper-Schrieffer) physics. We also discuss the physics and applications of engineered polariton structures.
The transport distance of excitons in exciton-polariton systems has previously been assumed to be very small ($lesssim 1~mu$m). The sharp spatial profiles observed when generating polaritons by non-resonant optical excitation show that this assumption is generally true. In this paper, however, we show that the transport distances of excitons in two-dimensional planar cavity structures with even a slightly polaritonic character are much longer than expected ($approx 20~mu$m). Although this population of slightly polaritonic excitons is normally small compared to the total population of excitons, they can substantially outnumber the population of the polaritons at lower energies, leading to important implications for the tailoring of potential landscapes and the measurement of interactions between polaritons.
Exciton-polaritons are a coherent electron-hole-photon (e-h-p) system where condensation has been observed in semiconductor microcavities. In contrast to equilibrium Bose-Einstein condensation (BEC) for long lifetime systems, polariton condensates have a dynamical nonequilibrium feature owing to the similar physical structure that they have to semiconductor lasers. One of the distinguishing features of a condensate to a laser is the presence of strong coupling between the matter and photon fields. Irrespective of its equilibrium or nonequilibrium nature, exciton-polariton have been observed to maintain strong coupling. We show that by investigating high density regime of exciton-polariton condensates, the negative branch directly observed in photoluminescence. This is evidence that the present e-h-p system is still in the strong coupling regime, contrary to past results where the system reduced to standard lasing at high density.
Singly quantized vortices have been already observed in many systems including the superfluid helium, Bose Einstein condensates of dilute atomic gases, and condensates of exciton polaritons in the solid state. Two dimensional superfluids carrying spin are expected to demonstrate a different type of elementary excitations referred to as half quantum vortices characterized by a pi rotation of the phase and a pi rotation of the polarization vector when circumventing the vortex core. We detect half quantum vortices in an exciton-polariton condensate by means of polarization resolved interferometry, real space spectroscopy and phase imaging. Half quantum vortices coexist with single quantum vortices in our sample.
The property of superfluidity, first discovered in liquid 4He, is closely related to Bose-Einstein condensation (BEC) of interacting bosons. However, even at zero temperature, when one would expect the whole bosonic quantum liquid to become condensed, a fraction of it is excited into higher momentum states via interparticle interactions and quantum fluctuations -- the phenomenon of quantum depletion. Quantum depletion of weakly interacting atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This is even more challenging in driven-dissipative systems such as exciton-polariton condensates(photons coupled to electron-hole pairs in a semiconductor), since their nonequilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of an optically trapped high-density exciton-polariton condensate by directly detecting the spectral branch of elementary excitations populated by this process. Analysis of the population of this branch in momentum space shows that quantum depletion of an exciton-polariton condensate can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the fraction of matter (exciton) in an exciton-polariton. Our results reveal the effects of exciton-polariton interactions beyond the mean-field description and call for a deeper understanding of the relationship between equilibrium and nonequilibrium BECs.