No Arabic abstract
We demonstrate an attack on a clock synchronization protocol that attempts to detect tampering of the synchronization channel using polarization-entangled photon pairs. The protocol relies on a symmetrical channel, where propagation delays do not depend on propagation direction, for correctly deducing the offset between clocks -- a condition that could be manipulated with optical circulators, which rely on static magnetic fields to break the reciprocity of propagating electromagnetic fields. Despite the polarization transformation induced within a set of circulators, our attack creates an error in time synchronization while successfully evading detection.
Event synchronisation is a ubiquitous task, with applications ranging from 5G technology to industrial automation and smart power grids. The emergence of quantum communication networks will further increase the demands for synchronisation in optical and electronic domains, thus incurring a significant resource overhead, e.g. through the use of ultra-stable clocks or additional synchronisation lasers. Here we show how temporal correlations of energy-time entangled photons may be harnessed for synchronisation in quantum networks. We achieve stable synchronisation jitter <50 ps with as few as 36 correlated detection events per 100 ms and demonstrate feasibility in realistic high-loss link scenarios. In contrast to previous work, this is accomplished without any external timing reference and only simple crystal oscillators. Our approach replaces the optical and electronic transmission of timing signals with classical communication and computer-aided post-processing. It can be easily integrated into a wide range of quantum communication networks and could pave the way to future applications in entanglement-based secure time transmission.
The quantum clock synchronization (QCS) is to measure the time difference among the spatially separated clocks with the principle of quantum mechanics. The first QCS algorithm proposed by Chuang and Jozsa is merely based on two parties, which is further extended and generalized to the multiparty situation by Krco and Paul. They present a multiparty QCS protocol based upon W states that utilizes shared prior entanglement and broadcast of classical information to synchronize spatially separated clocks. Shortly afterwards, Ben-Av and Exman came up with an optimized multiparty QCS using Z state. In this work, we firstly report an implementation of Krco and Ben-AV multiparty QCS algorithm using a four-qubit Nuclear Magnetic Resonance (NMR). The experimental results show a great agreement with the theory and also prove Ben-AV multiparty QCS algorithm more accurate than Krco.
In a recent paper (Scheme of the arrangement for attack on the protocol BB84, Optik 127(18):7083-7087, Sept 2016), a protocol was proposed for using weak measurement to attack BB84. This claimed the four basis states typically used could be perfectly discriminated, and so an interceptor could obtain all information carried. We show this attack fails when considered using standard quantum mechanics, as expected - such ``single-shot quantum state discrimination is impossible, even using weak measurement.
In this paper, we propose a panorama stitching algorithm based on asymmetric bidirectional optical flow. This algorithm expects multiple photos captured by fisheye lens cameras as input, and then, through the proposed algorithm, these photos can be merged into a high-quality 360-degree spherical panoramic image. For photos taken from a distant perspective, the parallax among them is relatively small, and the obtained panoramic image can be nearly seamless and undistorted. For photos taken from a close perspective or with a relatively large parallax, a seamless though partially distorted panoramic image can also be obtained. Besides, with the help of Graphics Processing Unit (GPU), this algorithm can complete the whole stitching process at a very fast speed: typically, it only takes less than 30s to obtain a panoramic image of 9000-by-4000 pixels, which means our panorama stitching algorithm is of high value in many real-time applications. Our code is available at https://github.com/MungoMeng/Panorama-OpticalFlow.
State-of-the-art atomic clocks are based on the precise detection of the energy difference between two atomic levels, measured as a quantum phase accumulated in a given time interval. Optical-lattice clocks (OLCs) now operate at or near the standard quantum limit (SQL) that arises from the quantum noise associated with discrete measurement outcomes. While performance beyond the SQL has been achieved in microwave clocks and other atomic sensors by engineering quantum correlations (entanglement) between the atoms, the generation of entanglement on an optical-clock transition and operation of such a clock beyond the SQL represent major goals in quantum metrology that have never been demonstrated. Here we report creation of a many-atom entangled state on an optical transition, and demonstrate an OLC with an Allan deviation below the SQL. We report a metrological gain of $4.4^{+0.6}_{-0.4}$ dB over the SQL using an ensemble consisting of a few hundred 171Yb atoms, allowing us to reach a given stability $2.8{pm}0.3$ times faster than the same clock operated at the SQL. Our results should be readily applicable to other systems, thus enabling further advances in timekeeping precision and accuracy. Entanglement-enhanced OLCs will have many scientific and technological applications, including precision tests of the fundamental laws of physics, geodesy, or gravitational wave detection.